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Abstract

In this paper, we calculate the beam distribution function after
filamentation (phase-mixing) of a focusing mismatch. This dis-
tribution is relevant when interpreting beam measurements and
sources of emittance dilution in linear colliders. It is also im-
portant when considering methods of diluting the phase space
density, which may be required for the machine protection sys-
tem in future linear colliders, and it is important when studying
effects of trapped ions which filament in the electron beam poten-
tial. Finally, the resulting distribution is compared with measured
beam distributions from the SLAC linac.

I. INTRODUCTION

In a conservative system, which a linear accelerator or stor-
age ring without synchrotron radiation closely approximate, the
six-dimensional phase space density is conserved. Similarly, if
the three degrees of freedom are uncoupled, all two-dimensional
projections of the six-dimensional phase space are also con-
served. A conservative emittance dilution arises when the trans-
verse or longitudinal degrees of freedom become coupled. In this
case, the 6-D emittance is preserved, but the projected emittances
are increased. It can easily be shown that coupling of two planes
always increases the smaller of the two projected emittances.

Because the emittance dilutions are conservative, they can
be corrected,i.e. the the emittance can be uncoupled, provided
that the dilution has not filamented (phase mixed). Filamentation
arises because the beam has a spread in oscillation frequencies
due to the energy spread in the beam, nonlinear fields, space
charge forces,etc.The effect of the filamentation is to cause a
phase mixing which makes it difficult to correct dilutions of the
projected emittance. Once a dilution filaments, it is, for practical
purposes, unrecoverable (synchrotron oscillations in a storage
ring provide one obvious exception to this statement).

In this paper, we will discuss the beam distribution function
arising after filamentation of a focusing mismatch. When a beam
is injected into a storage ring or linac, it should be matched to
the periodic or natural lattice functions. A mismatched beam
will filament, with corresponding emittance growth, until it is
matched to the lattice. In a storage ring, the beta function is
chosen to be periodic but in a linac there is room for ambiguity
since one needs to define initial values or boundary conditions.
Actually, most long linacs are constructed from adiabatically
varying periodic focusing cells. The natural lattice functions are
simply those defined by the periodic cells.

Understanding the beam distribution function after filamen-
tation is relevant when interpreting beam emittance measure-
ments and locating the sources of emittance dilution. It is also
important when considering methods of increasing the phase
space density by deliberately mismatching the beam. Finally, it
is important when studying trapped ions in an electron beam. In
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the next section, we will derive the distribution function for the
beam actionJ and the projection into thex plane. Then we will
present some measurements from the Stanford Linear Collider
(SLC) linac, and finally, we will discuss the applications.

II. THEORY

In a periodic linear focusing channel, a particle will perform
betatron oscillations and its position and angle(dx/ds= x′) can
be expressed in a form analogous to that of a harmonic oscillator
[1]:

x =
√

2Jβ(s) cos(ψ(s)+ φ) (1)

x′ =
√

2J

β(s)

(
sin(ψ(s)+ φ)+ α(s) cos(ψ(s)+ φ)) (2)

Here, J andφ are the particle ‘action’ and ‘angle’ coordinates
and are constants of the motion. In addition, the focusing lattice
is described by the periodic lattice functionsα(s) andβ(s) and
the phase advanceψ(s), whereα andψ are given by

α ≡ −1

2

dβ

ds
ψ(s) ≡

∫ s

0

ds′

β(s′)
. (3)

Finally, these equations can be inverted to solve for the action in
terms of the particle coordinates

J = 1

2

(
1+ α2

β
x2+ 2αxx′ + βx′2

)
. (4)

Next, consider a particle beam that occupies some area in
x-x′ phase space and has a distribution functiong(x, x′). The
rms emittance of the beam is equal to

ε ≡
√
〈x2〉〈x′2〉 − 〈xx′〉2 (5)

and the beam can be described with an ellipse whose orientation
is specified by the second moments:〈x2〉, 〈xx′〉, and〈x′2〉, and
whose area is given byπε. With complete generality, the second
moments can be written in terms of the beam emittance and two
parametersα? andβ? which we will refer to as beam parameters:

〈x2〉 = β?ε 〈x′2〉 = 1+ α?2

β?
ε 〈xx′〉 = −α?ε . (6)

These beam parametersα? andβ? describe the orientation of the
beam ellipse in the(x, x′) phase space and are not necessarily
related to the lattice functionsα andβ.

The beam distribution function can be expressed in terms
of the action-angle coordinates, but, in general it will depend
upon bothJ andφ. Instead, we can write the position and angle
of particles in terms of the beam parametersα? andβ? and an
amplitude and phase,J? andφ?:

x =
√

2J?β? cosφ? (7)

x′ =
√

2J?/β?(sinφ? − α? cosφ?) . (8)



             
Now, assume that the beam distribution is rotationally symmetric
in the normalized phase spacex andα?x + β?x′; this is true of
bi-gaussian beams and most other distributions of interest. In
this case, the distribution function will be independent of the
phaseφ? and is just a function ofJ?. Furthermore, the rms beam
emittanceε is simply equal to the expectation of the amplitude
〈J?〉.

The action-angle coordinates can be related to the amplitude
and phase as:

J = J?
[(
β?

β
+
(
α

√
β?

β
− α?

√
β

β?

)2)
cos2 φ?

+ 2

(
α − α? β

β?

)
cosφ? sinφ? + β

β?
sin2 φ?

]
(9)

and
tanφ = β

β?
tanφ? +

(
α − α? β

β?

)
. (10)

If the beam parameters are equal to the lattice functions, then
the beam is ‘matched’ to the lattice. In this case, the actionJ
is equal to the amplitudeJ? and the angleφ is equal toφ?. In
addition, the beam distribution function, written in action-angle
coordinates, will be independent of the angle coordinate and the
rms beam emittance is equal to the expectation of the particle
actions〈J〉. If the beam filaments as it is transported through the
lattice, effectively randomizing the angle coordinateφ, the beam
emittance and distribution remain unchanged.

In contrast, if the beam is mismatched to the lattice and the
beam filaments, the beam distribution function will change and
the filamented rms emittanceε f will increase. The emittance
increase is trivially calculated from Eq. (9) and can be expressed
in terms of theBmag parameter [2][3]:

ε f = Bmagε , (11)

where

Bmag≡ 1

2

[
β?

β
+ β

β?
+
(
α

√
β?

β
− α?

√
β

β?

)2]
. (12)

The calculation of the beam distribution function after fila-
mentation is a little more complicated. Assuming that the angle
coordinate is independent of the action after the filamentation,
we can express the distribution as

g(J)d J =
∫ 2π

0

dφ?

2π
g?(J?)d J? , (13)

whereJ? = J/X(φ?) and

X(φ?) = a sin2 φ? + 2bsinφ? cosφ? + ccos2 φ? , (14)

with
a = β

β?
b = α − α? β

β?
(15)

c = β?

β
+
(
α

√
β?

β
− α?

√
β

β?

)2

. (16)

If the initial beam has a bi-gaussian distribution inx andx′,
then the distributiong?(J?) is an exponential distribution:

g?(J?) = e−J?/ε

ε
, (17)

and Eq. (13) is straight forward to evaluate. In the trivial case,
whereb = 0 andβ? À β or β À β?, the distribution forJ is
just aχ -squared distribution with one degree of freedom. In the
general case, we can evaluate the integral by first performing a
rotation to eliminate the cross term inX(φ?). In this case,

X(φ?) = λ1 cos2(φ? − θ)+ λ2 sin2(φ? − θ) , (18)

where

λ1,2 = a+ c

2
± 1

2

√
(a− c)2+ 4b2 (19)

θ = tan−1

(
c− a

2b
− 1

2b

√
(c− a)2+ 4b2

)
. (20)

By changing the variable of integration fromφ? to 1/c2− 1/X,
the integral can be expressed in the form of a tabulated integral
[4] and the result can be expressed in terms of theBmagparameter:

g(J) = e−J Bmag/ε

ε
I0

(
J

ε

√
Bmag

2− 1

)
, (21)

where I0 is the modified Bessel function,Bmag is defined in
Eq. (12), andε is the injected beam emittance before filamen-
tation. As expected, whenBmag = 1, the distribution is an
exponential and whenBmag→ ∞, the distribution becomes a
χ -squared with one degree of freedom.

Finally, we can calculate the projection into thex plane
which is the beam distribution that would be measured. The
projection is

f (x) =
∫ ∞
−∞

dx′
g
(
J(x, x′)

)
2π

, (22)

whereJ(x, x′) is given in Eq. (4). In the general case, the dis-
tribution function can be expressed in terms of a degenerate hy-
pergeometric series of two variables. Unfortunately, such an
expression is not any easier to evaluate than the integral Eq. (22).
In the limit whereBmag→∞, the projection simplifies to

f (x) = e−x2/8βε f

√
4π3

√
βε f

K0

(
x2

8βε f

)
, (23)

where K0 is the modified Bessel function andε f = Bmagε. The
infinite value atx = 0 arises because we have essentially as-
sumed a one-dimensional injected beam. A similar expression
was derived in Ref. [5] where the author was considering the
distribution function for trapped ions in an electron beam.

The distribution f (x) is plotted versus the rms beam size√
βBmagε for different values ofBmag in Fig. 1. Notice that as

the mismatch becomes larger, the relative amplitude of the central
core of the beam increases while long tails contribute to the rms
emittance. In the limit of largeBmag, the density of the core can
be written:

lim
Bmag→∞

f (0) = 1

π3/2
√

Bmagβε
ln(
√

128Bmag) . (24)

The core density decreases as ln(Bmag)/σx rather than 1/σx as
it would if the distribution did not change as the emittance in-
creased.

III. MEASUREMENTS
Figure 2 shows the measured profile of a filamented beam

in the SLC with large non-gaussian tails. The beam was created
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Figure. 1. f (x) versus the rms beam size forBmag= 1.0 (solid),
Bmag= 1.25 (dashes),Bmag= 2.0 (dots),Bmag= 5.0 (dash-dot),
andBmag= 50.0 (dashes).

by an error in a solenoid at the low energy end of the SLAC
accelerator. The beam distribution was measured after the beam
had filamented; this can be determined by comparing the beam
profiles measured at different betatron phases. In Fig. 2, the
resulting mismatch had aBmag ≈ 5. The data was fit with a
phenomenological ‘super-gaussian’ function [6] which shows
reasonable agreement. The small asymmetry that is visible in
the data is likely due to transverse wakefields.
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Figure. 2. Strong non-gaussian tails form a ‘Christmas tree’ like
distribution which indicates that there is a large mismatch of the
beam.

IV. DISCUSSION
In this paper, we have described the beam distribution func-

tion arising from a filamented focusing mismatch. Understand-

ing the beam distribution can aid interpreting emittance measure-
ments in a linear collider as well as assist in the diagnosis of the
problem.

Another situation where this distribution is relevant occurs
when considering machine protection schemes for future linear
colliders. If mis-steered, the very small beams in future linear
colliders could puncture the vacuum chamber in a single pulse.
This is not a desirable feature when commissioning components.
One possible method of protecting the collider is to generate a
large mismatchBmag ∼ 1000 which would then filament and
decrease the beam density. This approach has the advantage
of not perturbing the beam centroid so that wakefield effects,
steering,etc., are not changed. Understanding the evolution of
the core density is important in evaluating this technique.

Finally, the filamented distribution also describes the distri-
bution of ions generated by collisional ionization and trapped in
a long train of bunches [5][7]. In this case, the ions are created
with a transverse density profile equal to the transverse beam
profile but the ion thermal energy is typically small compared to
the potential energy in beam field. Thus, the ions are mismatched
relative to the focusing field of the beam. As ions continue to
accumulate, the density evolves into the filamented distribution
with Bmag = Epot/Eth À 1 andβε f = σ 2/2, whereσ is the
rms electron beam size.
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