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Abstract the next section, we will derive the distribution function for the
In this paper, we calculate the beam distribution function aftb(raam actior and the projection into the plane. The_n we will .
filamentation, (phase-mixing) of a focusing mismatch. This di _resent some me_asurement_s frc_)m the Stanfor(_j L|_near Coliider
tribution is relevant when interpreting beam measurements aSé_C) linac, and finally, we will discuss the applications.
sources of emittance dilution in linear colliders. It is also im- Il. THEORY

portant when considering methods of diluting the phase space )

density, which may be required for the machine protection sys- In a periodic linear focusing channel, a particle will perform
tem in future linear colliders, and it is important when studyingetatron oscillations and its position and angl&/ds = x’) can
effects of trapped ions which filament in the electron beam potére expressed in a form analogous to that of a harmonic oscillator
tial. Finally, the resulting distribution is compared with measurdd]:
beam distributions from the SLAC linac.

X = /2JB(s)cogy(s) + ) 1)
[. INTRODUCTION 2J .
_ o X' = [ (siN(y(s) + ) +a(s) cosy (s) + ) (2)
In a conservative system, which a linear accelerator or stor- B(s)

age ring without synchrotron radiation closely approximate, tﬁ]_(F re J
six-dimensional phase space density is conserved. Similarlya' !

tphrf)jt:gﬁgnie%;egseoi:;e;ﬂ]‘)erg;:];F%%‘;leds’;;Ict:’(;'riin;?;gg@ escribed by the periodic lattice functiomés) and 8(s) and
served. A conservative emittance dilution arises when the trans- phase advanag(s), wherex andy’ are given by
verse or longitudinal degrees of freedom become coupled. Inthis 1ds s ds

: ' : . o=—=— VY(s) = ) (3)
case, the 6-D emittance is preserved, but the projected emittances 2ds o B(s)
are increased. It can easily be shown that coupling of two planes i i L
always increases the smaller of the two projected emittances’Nally. these equations can be inverted to solve for the action in

Because the emittance dilutions are conservative, they d§HMS Of the particle coordinates

be correctedi.e. the the emittance can be uncoupled, provided 1/1+a?
that the dilution has not filamented (phase mixed). Filamentation =5 ( B
arises because the beam has a spread in oscillation frequencies
due to the energy spread in the beam, nonlinear fields, space Next, consider a particle beam that occupies some area in
charge forcesetc. The effect of the filamentation is to cause x-x’ phase space and has a distribution functigr, x’). The
phase mixing which makes it difficult to correct dilutions of thems emittance of the beam is equal to
projected emittance. Once a dilution filaments, itis, for practical
purposes, unrecoverable (synchrotron oscillations in a storage €= \/(x2)(x’2> — (xx)? (5)

ring provide one obvious exception to this statement). ] ] ) ) ]
In this paper, we will discuss the beam distribution functioﬁnd the beam can be described with an ellipse whose orientation

arising after filamentation of a focusing mismatch. When a bedfySPecified by the second moments?), (xx'), and(x®), and

is injected into a storage ring or linac, it should be matched Y§10S€ areais given bye. With complete generality, the second
the periodic or natural lattice functions. A mismatched beafioMents can be written in terms of the beam emittance and two
will filament, with corresponding emittance growth, until it idarametere” andg* which we will refer to as beam parameters:

and¢ are the particle ‘action’ and ‘angle’ coordinates
are constants of the motion. In addition, the focusing lattice

X2 + 2axX + ,3x’2> . (4)

matched to the lattice. In a storage ring, the beta function is ) 1+ o2
chosen to be periodic but in a linac there is room for ambiguity (X3 =pre (X7 = —e¢ (xX)=—a%e. (6)
since one needs to define initial values or boundary conditions. p

Actually, most long linacs are constructed from adiabaticalljhese beam parametersandg* describe the orientation of the
varying periodic focusing cells. The natural lattice functions atgeam ellipse in théx, x’) phase space and are not necessarily
simply those defined by the periodic cells. related to the lattice functionsandp.

Understanding the beam distribution function after filamen- The beam distribution function can be expressed in terms
tation is relevant when interpreting beam emittance measueé-the action-angle coordinates, but, in general it will depend
ments and locating the sources of emittance dilution. It is alspon bothJ and¢. Instead, we can write the position and angle
important when considering methods of increasing the phasfeparticles in terms of the beam parametetsand g* and an
space density by deliberately mismatching the beam. Finallyaithplitude and phasd; and¢*:
is important when studying trapped ions in an electron beam. In x = \/23°Bcosp* @)
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Now, assume that the beam distribution is rotationally symmetaad Eq. (13) is straight forward to evaluate. In the trivial case,
in the normalized phase spac@anda*x + g*X’; this is true of whereb = 0 andg* > g or 8 > g*, the distribution forJ is
bi-gaussian beams and most other distributions of interest. juist ax -squared distribution with one degree of freedom. In the
this case, the distribution function will be independent of thgeneral case, we can evaluate the integral by first performing a
phasep* and is just a function od*. Furthermore, the rms beamrotation to eliminate the cross term Xy¢*). In this case,
emittancee is simply equal to the expectation of the amplitude X($") = A1 COL(" — 0) + I SIFP(G" —6) | (18)

(J*).
The action-angle coordinates can be related to the amplituglieere
and phase as: 1
M2 = 204 @_ory (19)
/B B o 2 24 2 2 .
b= [(FJF (a B E) )CO i o = tan_1<02_ba - 2_bV(C—a)2+4b2) . (20)

+ 2(01 - 06*?) cosg”™ sing” + g sir? W} (9) By changing the variable of integration frapi to 1/c? — 1/ X,

the integral can be expressed in the form of a tabulated integral
B [4] and the result can be expressed in terms oBhg parameter:
o — a*E) . (20) o Bnag/e 3
. . Q(J) = |0<—\/ Bma92 - 1) s (21)
If the beam parameters are equal to the lattice functions, then € €
the beam is ‘matched’ to the lattice. In this case, the acionyhere | is the modified Bessel functiorBpsg is defined in

is equal to the amplitudd* and the angl is equal tog*. In  Eq, (12), and: is the injected beam emittance before filamen-
addition, the beam distribution function, written in action-anglgytion. As expected, wheBmag = 1, the distribution is an

coordinates, will be independent of the angle coordinate and &g onential and wheBnag — oo, the distribution becomes a
rms beam emittance is equal to the expectation of the partiglesquared with one degree of freedom.
aCtionS(J). If the beam filaments as itis transported through the Fina”y, we can calculate the projection into theplane

lattice, effectively randomizing the angle coordin@téhe beam \yhich is the beam distribution that would be measured. The

and B
tang = 5 tang™ + (

emittance and distribution remain unchanged. rojection is

In contrast, if the beam is mismatched to the lattice and the . )
beam filaments, the beam distribution function will change and f(x) = / dX,g(J(X, X)) 22)
the filamented rms emittaneg will increase. The emittance oo 2 ’

increase is trivially calculated from Eg. (9) and can be expres

S N . o
in terms of theBag parameter [2][3]: \ﬁﬂere\](x, x') is given in EqQ. (4). In the general case, the dis

tribution function can be expressed in terms of a degenerate hy-
€t = Bmag , (11) pergeometric series of two variables. Unfortunately, such an
expression is not any easier to evaluate than the integral Eq. (22).
In the limit whereBag — o0, the projection simplifies to

_ 1[,3* B ( B _ |8 ﬂ e /8 2
Brag= 5| 7 + o7 T\ = — "\ [ ¢ : (12) = .
=208 T T\ B T8 "0 = Vs ae KO<8,3€f) ’ @

The calculation of the beam distribution function after fila\—Nh
mentation is a little more complicated. Assuming that the aan%
coordinate is independent of the action after the filamentaticg"lnJ
we can express the distribution as

where

ere Ky is the modified Bessel function arkg = Bmnage. The

inite value atx = 0 arises because we have essentially as-
med a one-dimensional injected beam. A similar expression
was derived in Ref. [5] where the author was considering the

2T dg* distribution function for trapped ions in an electron beam.
g(ddJ = / o gr(JnHdJr, (13) The distribution f (x) is plotted versus the rms beam size
/B Bmage for different values ofBmag in Fig. 1. Notice that as
whereJ* = J/X(¢*) and the mismatch becomes larger, the relative amplitude of the central
X (%) = asir? ¢* + 2bsing* cosg* + ccod ¢* , (14) core of the beam increases while long tails contribute to the rms
emittance. In the limit of larg8mag, the density of the core can
with B B be written:
. IB* . Bm:grzoo () 2 [Boagpe N(v128Bmag . (24)
c=—+ <oz\/i — a*\/:> . (16) The core density decreases aéBRag/ox rather than loy as
p p p it would if the distribution did not change as the emittance in-

If the initial beam has a bi-gaussian distributiorkiandx’, ~creased.
then the distributiory* (J*) is an exponential distribution: 1. MEASUREMENTS

e Figure 2 shows the measured profile of a filamented beam
g'(J) = pa (17) " in the SLC with large non-gaussian tails. The beam was created




1.2 I I I ing the beam distribution can aid interpreting emittance measure-
ments in a linear collider as well as assist in the diagnosis of the
| problem.
I Another situation where this distribution is relevant occurs
| when considering machine protection schemes for future linear
08T —] colliders. If mis-steered, the very small beams in future linear
\ colliders could puncture the vacuum chamber in a single pulse.
)‘ This is not a desirable feature when commissioning components.
\ One possible method of protecting the collider is to generate a
large mismatchBn,y ~ 1000 which would then filament and
decrease the beam density. This approach has the advantage
of not perturbing the beam centroid so that wakefield effects,
steering.etc, are not changed. Understanding the evolution of
the core density is important in evaluating this technique.
Finally, the filamented distribution also describes the distri-
bution of ions generated by collisional ionization and trapped in
0 1 2 3 along train of bunches [5][7]. In this case, the ions are created
4-95 X (0x) 7940A1 with a transverse density profile equal to the transverse beam
) . ) profile but the ion thermal energy is typically small compared to
Figure. 1. f (x) versus the rms beam size Bfag = 1.0 (solid),  the potential energy in beam field. Thus, the ions are mismatched
Bmag = 1.25 (dashesBmag = 2.0 (dots),Bnag = 5.0 (dash-dot), relative to the focusing field of the beam. As ions continue to
andBpag = 50.0 (dashes). accumulate, the density evolves into the filamented distribution
With Bmag = Epot/Eth > 1 andBes = 02/2, whereo is the
by an error in a solenoid at the low energy end of the SLAns electron beam size.
accelerator. The beam distribution was measured after the beam References
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Figure. 2. Strong non-gaussian tails form a ‘Christmas tree’ like
distribution which indicates that there is a large mismatch of the
beam.

IV. DISCUSSION

In this paper, we have described the beam distribution func-
tion arising from a filamented focusing mismatch. Understand-



