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Abstract

A new program to simulate the beam-beam interaction be-
tween asymmetric et and e~ beams is being developed. Beam
bunch distributions are expanded in terms of orthogona ba
sis functions constructed from solutionsto the two-dimensional
guantum mechanical harmonic oscillator. Includingall solutions
corresponding to oscillator energies up to the N level yidds
a basis which spans the set of functions composed of a product
of a Gaussian times a Hermite polynomial of order N or lower.
A consistent and economical description of non-Gaussian beam
shapes is thus made possible. In addition, the use of continu-
ous density functions effectively eliminates statistical fluctua
tionswhich may arise when beam bunches are model ed by track-
ing particles. The beam dynamics are encapsulated in matri-
ces which operate on the expansion coefficients of the bunches.
These matrices are computed oncefor each beam with any given
set of basisfunctionsand for any particular accel erator. Theevo-
[ution of a beam distributionis computed by matrix multiplica
tion.

I. INTRODUCTION

Currently used algorithms for the caculation of the effects
of the beam-beam interaction in eTe~ colliders[1], [2], [3] in-
volve tracking representative particlesthrough the machine. An
advantage of this approach is that the physics of the bunch dy-
namicsis modeled in a straightforward, clear manner. Also, the
freedom of motion of the individua tracked particles permits
arbitrary bunch distributions to evolve. However, their use of
a finite number of particles allows for the possibility of statis-
tical fluctuations, the magnitudes of which are sensitive to the
number of particlestracked. In addition, it is difficult to model
with particle tracking the behavior of the bunch core [< O()]
and the behavior of thetails[> O(o)] simultaneously in a self-
consistent manner. We have been developing a new description
of abunched beam in which the shapes the bunches can assume
are constrained (albeit in an orderly and physically reasonable
way) but can be described by arelatively small number of pa-
rameters. In addition, model-dependent statistical fluctuations
are removed.

The new approach to modeling thetime evolution of colliding
bunched et and ¢~ beams is outlined as follows:

« A bunchdistributionis expanded in terms of orthogonal ba-
sis functions which are constructed from solutions to the
two-dimensional quantum harmonic oscillator problem.

o A coordinatetransformationismadeto anormalized system
in which each phase space dlipse of the beam isa circle.
This removes the dominant, uncoupled first-order optics.

» The beam-beam interaction is modeled by dividing each
beam into transverse dlices and then colliding the beams
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dice by dlice. For a given dice, the effect of its interac-
tionwith each diceinthe other beam isassumed to be small
so that a Taylor series expansion of the distribution can be
used.

+ The extreme relativistic limit is taken to model the electric

field of adice.

o Theluminosity isthe sum of the luminositiescal culated for

each dice-dlice collision.

The development of a new code is motivated by the need to
reliably evaluate the effects of the beam-beam interaction under
highly disruptiveconditionssuch asthosein alinac-ring collider.
In such acollider, arelatively low energy ¢~ beam from alinac
collideswith arelatively high energy et beamin aring. [4] Be-
cause the current in the linac beam is necessarily low compared
to the stored beam, very tight focusing is required to achieve a
useful luminosity. The configurationis, accordingly, sengtiveto
beam blowup due to the beam-beam interaction. A reliable cal-
culation of thiseffect isessential to any assessment of thisalter-
native.

[I. THE MODEL
A. Normalized coordinates

Wewish to removetheeffects of first-order opticson the beam
distribution by making atransformation into normalized coordi-
nates. The phase ellipse of aparticle, whichin onedimensionis
described by
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is skewed by an angle ¢, where A, isthe particle’saction in =
and #. Theprincipal axesof thedllipse, (z, #), arerotated by this
angle and then normalized. The rotation to the principal axesis
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Equation 1 in these coordinates becomes
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Then the normalized coordinates, (i, v), are defined such that
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In all six dimensions, the transformation at a location s in the
accelerator isgiven by
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B. Beamdescription
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The distribution of a single bunch of an electron or positron
beam is represented by
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These are the basis functions of the beam, which are the solu-
tionsto the two-dimensiona quantum harmonic oscillator prob-
lem [5]. The functions H,(¢) are Hermite polynomiasin ¢ of
order p, and b, b,, and b, arearbitrary oscillator parameters cho-
sen to yield the most compact description of a bunch. The nor-
malization of the basis functions NV, ,,ni; is defined by
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Including s asan argument of p isareminder that thetransforma-
tion from normalized to unnormalized coordinatesis a function
of the Twiss parameters evaluated t s.

Thesumof theindices{n, m, h, k, ¢, j } islimited by theorder
of the expansion of basis functions,

n+m+h4+k+i+j<N. (13)

Because the solutions are that of the two-dimensiona harmonic
oscillator, the indices for each two-dimensiona pair will share
therdation

n=N —m,
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where N’ is an integer less than or equal to . The number of
Crmnki; Coefficients for an order V isgivenin Tablel.

Tablel
Number of basis function coefficients for order N
N N N
0O 1|3 8 |6 924
1 7|14 2107 1716
2 28| 5 462 | 8 3003

C. Sicingthe beam

To calculate the effects of the beam-beam interaction between
the colliding bunches, it is necessary to divide each beam into
dicesand to ca culatetheincremental changes as the beams pass
through each other. The transverse beam distribution for each
diceisgiven by
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where ¢ is the thickness of the dice. The value of the integral
for each ¢ and j istabulated and the constant C',,xi; becomes
Cn*mhkij to distinguishtheslicesfrom oneanother. After thetwo
beams have been stepped through one another, the dliced distri-
butionisreassembled into asingle bunch with afunctiona form
describing the dependence on  and . The new coefficients of
the reassembled bunch are determined by a y? fit, which gives

the expression
SA-I—t/Z oo
Zcrf}nhkij / dl/ dd pij(C,&;8)
A s;—t/Z e
SA-I—t/Z

w/ 46 piy (¢ € 5)

s;—t/Z

Crmhkij = (16)

2.

A

D. The beam-beaminteraction

The effects of the beam-beam interaction are determined by
making a Taylor expansion of each dice, keeping only the lin-
ear terms in the expansion. Thisisjustified if the disruption of
asinglediceissmall for each dice-dice interaction. Each time
adlice collideswith another dice, the resulting particle distribu-
tion, o/, is

dp
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The extreme relativisticlimit is taken such that the electric field
lines are entirely transverse. Each dlice in the oncoming beam
fr(x; s) istreated as part of an infinite line charge to calculate
the transverse impul se on a beam [6],
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where al but horizontal and vertical coordinates have been inte-
grated over,
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A new set of coefficients describes the changed dice. Substitut-
ing Equation 15 into Equation 17 gives

Z Z Cr;;rf;/z;ij {pnmhk

1A (
Cnmhkzy Pramhk =

nmhkij nmhkij
B e? op 0 Jv 0
2meoBo | 00 o’ "™ T Bg By
S @)y B
< g
e? de 0O Ow 0O
27T€0E0 8(;5 Oe anhk 8(;3 O “ Pnmbhk

(20)

~ y—uy
x/p£?><x’;s>—|x T }

where we have labeled the beams 1 and 2. A similar equation
will exist for beam 2. The closure relationship between Hermite

polynomials allows the solution of ¢’ * 1) totake the form
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Fy in. g (s) isthetabulated result of theintegral. Thein-
tegra ‘of Equatlon 20 can be broken down into severa integrals
of exponentials times polynomials, except for a separable one-
dimensional integral which isintegrated numerically and tabu-
lated. The evolution of the beam distribution due to the beam-
beam interactionis reduced to a sum over the coefficients of the
basis functions.

The luminosity, £, can now be calculated as the sum of the
luminosities for each interaction between al pairs of dlices.
We also utilize the closure of the Hermite polynomials to re-
duce the luminosity to a form containing tabulated integrals,

Grmnk (sax), ad expansion coefficients,
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Equation 22 isa sum over all dicesinteracting at the point sy
wherethe A" diceof beam 1 collideswiththe )’ " lice of beam
2.

E. Longitudinal phase space

Four effects which directly influence the longitudina bunch
distribution are being included in the model: synchrotron radia
tion damping (in both transverse and longitudinal phase spaces),
guantum excitation, RF acceleration, and beam energy changes
during beam-beam collisions. Longitudina damping is being
model ed by aconvolution of the beam distributionand theradia-
tiondistributionfunctions.[7] Only terms containedin adescrip-
tion of the beam to afixed order N are retained. Quantum exci-
tation is being modeled in a parallel fashion. Transverse damp-
ingismodel ed using alongitudinal momentum impulse at the RF

cavity. Themagnitude of thekick isafunction of / only. Finally,
we have begun to investigate the inclusion of energy changes
during the beam-beam collisionsfollowing the approach of Hi-
rataet ol. [6] asfar asapplicable.

1. SUMMARY

By expressing thedistributionof asinglebeam bunch asan ex-
pansion of thetwo-dimensional quantum harmonic oscillator ba-
sis functions in normalized coordinates, the beam dynamics for
Gaussian and non-Gaussian beams can be calculated. The beam
blowup dueto the beam-beam interaction and theluminosity can
be computed directly as asum over the coefficients inthe expan-
sion and tabulated integrals. The characteristics of thisapproach
complement those of currently used algorithms.

References

[1] R.Li, “A Strong-Strong Simulation of the Beam-Beam Ef-
fect in a Linac/Ring B-Factory,” unpublished.

[2] An Asymmetric B Factory Based on PEP, LBL-PUB-5303,
SLAC-PUB-372, February 1991

[3] R.Siemann, “The Beam-Beam Interactioninet e~
Rings,” SLAC-PUB-6073, March 1993.

[4] K.D. Cromer, B. E. Norum, “High-Luminosity Linac/Ring

*e~ Colliders,” unpublished.

[5] M. Deady, “Some Properties of the One-Dimensional and
Two-Dimensional Quantum Harmonic Oscillator,” unpub-
lished.

[6] K. Hirata, H. Moshammer, F. Ruggiero, “A Symplectic
Beam-Beam I nteraction With Energy Change,” Particle Ac-
celerators, 1993, Vol. 40, pp. 205-228.

[7] M. Sands, “ The Physicsof Electron Storage Rings,” SLAC-
121, November 1970.

Storage



