
A NEW MODEL OF THE e
+
e
� BEAM-BEAM INTERACTION �

K. D. Cromer, B. E. Norum, Department of Physics, University of Virginia, Charlottesville, VA 22901 USA
R. Rossmanith, DESY, Hamburg, Germany

Abstract

A new program to simulate the beam-beam interaction be-
tween asymmetric e+ and e� beams is being developed. Beam
bunch distributions are expanded in terms of orthogonal ba-
sis functions constructed from solutions to the two-dimensional
quantum mechanical harmonic oscillator. Including all solutions
corresponding to oscillator energies up to the N th level yields
a basis which spans the set of functions composed of a product
of a Gaussian times a Hermite polynomial of order N or lower.
A consistent and economical description of non-Gaussian beam
shapes is thus made possible. In addition, the use of continu-
ous density functions effectively eliminates statistical fluctua-
tions which may arise when beam bunches are modeled by track-
ing particles. The beam dynamics are encapsulated in matri-
ces which operate on the expansion coefficients of the bunches.
These matrices are computed once for each beam with any given
set of basis functions and for any particular accelerator. The evo-
lution of a beam distribution is computed by matrix multiplica-
tion.

I. INTRODUCTION
Currently used algorithms for the calculation of the effects

of the beam-beam interaction in e+e� colliders [1], [2], [3] in-
volve tracking representative particles through the machine. An
advantage of this approach is that the physics of the bunch dy-
namics is modeled in a straightforward, clear manner. Also, the
freedom of motion of the individual tracked particles permits
arbitrary bunch distributions to evolve. However, their use of
a finite number of particles allows for the possibility of statis-
tical fluctuations, the magnitudes of which are sensitive to the
number of particles tracked. In addition, it is difficult to model
with particle tracking the behavior of the bunch core [� O(�)]
and the behavior of the tails [> O(�)] simultaneously in a self-
consistent manner. We have been developing a new description
of a bunched beam in which the shapes the bunches can assume
are constrained (albeit in an orderly and physically reasonable
way) but can be described by a relatively small number of pa-
rameters. In addition, model-dependent statistical fluctuations
are removed.

The new approach to modeling the time evolution of colliding
bunched e+ and e� beams is outlined as follows:

� A bunch distribution is expanded in terms of orthogonal ba-
sis functions which are constructed from solutions to the
two-dimensional quantum harmonic oscillator problem.

� A coordinate transformation is made to a normalized system
in which each phase space ellipse of the beam is a circle.
This removes the dominant, uncoupled first-order optics.

� The beam-beam interaction is modeled by dividing each
beam into transverse slices and then colliding the beams
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slice by slice. For a given slice, the effect of its interac-
tion with each slice in the other beam is assumed to be small
so that a Taylor series expansion of the distribution can be
used.

� The extreme relativistic limit is taken to model the electric
field of a slice.

� The luminosity is the sum of the luminosities calculated for
each slice-slice collision.

The development of a new code is motivated by the need to
reliably evaluate the effects of the beam-beam interaction under
highlydisruptive conditionssuch as those in a linac-ring collider.
In such a collider, a relatively low energy e� beam from a linac
collides with a relatively high energy e+ beam in a ring. [4] Be-
cause the current in the linac beam is necessarily low compared
to the stored beam, very tight focusing is required to achieve a
useful luminosity. The configuration is, accordingly, sensitive to
beam blowup due to the beam-beam interaction. A reliable cal-
culation of this effect is essential to any assessment of this alter-
native.

II. THE MODEL

A. Normalized coordinates

We wish to remove the effects of first-order optics on the beam
distribution by making a transformation into normalized coordi-
nates. The phase ellipse of a particle, which in one dimension is
described by

x2 + 2�x� + ��2 =
Ax

�
; (1)

is skewed by an angle ', where Ax is the particle’s action in x

and �. The principal axes of the ellipse, (�x, ��), are rotated by this
angle and then normalized. The rotation to the principal axes is

�x = RT
x; (2)
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�
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Equation 1 in these coordinates becomes
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�
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Then the normalized coordinates, (�, �), are defined such that
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In all six dimensions, the transformation at a location s in the
accelerator is given by8>>>>>>>>>>>>>>>>>:
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B. Beam description

The distribution of a single bunch of an electron or positron
beam is represented by

� =
X

nmhkij

Cnmhkij �nmhkij(�; �; �; !; �; �; s); (9)

where
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#
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These are the basis functions of the beam, which are the solu-
tions to the two-dimensional quantum harmonic oscillator prob-
lem [5]. The functions Hp(q) are Hermite polynomials in q of
order p, and bx, by, and bz are arbitrary oscillator parameters cho-
sen to yield the most compact description of a bunch. The nor-
malization of the basis functions Nnmhkij is defined by
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so thatZ
1

�1

d6� �(�; �; �; !; �; �; s)

=
X

nmhkij

Cnmhkij =

�
1 n;m; h; k; i; and j even
0 n;m; h; k; i; or j odd

(12)

Including s as an argument of � is a reminder that the transforma-
tion from normalized to unnormalized coordinates is a function
of the Twiss parameters evaluated at s.

The sum of the indices fn;m; h; k; i; jg is limited by the order
of the expansion of basis functions,

n+m + h+ k + i + j � N: (13)

Because the solutions are that of the two-dimensional harmonic
oscillator, the indices for each two-dimensional pair will share
the relation

n = N 0 �m; (14)

where N 0 is an integer less than or equal to N . The number of
Cnmhkij coefficients for an order N is given in Table I.

Table I

Number of basis function coefficients for order N

N N N
0 1 3 84 6 924
1 7 4 210 7 1716
2 28 5 462 8 3003

C. Slicing the beam

To calculate the effects of the beam-beam interaction between
the colliding bunches, it is necessary to divide each beam into
slices and to calculate the incremental changes as the beams pass
through each other. The transverse beam distribution for each
slice is given by
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where t is the thickness of the slice. The value of the integral
for each i and j is tabulated and the constant Cnmhkij becomes
C �
nmhkij to distinguishthe slices from one another. After the two

beams have been stepped through one another, the sliced distri-
bution is reassembled into a single bunch with a functional form
describing the dependence on l and �. The new coefficients of
the reassembled bunch are determined by a �2 fit, which gives
the expression
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D. The beam-beam interaction

The effects of the beam-beam interaction are determined by
making a Taylor expansion of each slice, keeping only the lin-
ear terms in the expansion. This is justified if the disruption of
a single slice is small for each slice-slice interaction. Each time
a slice collides with another slice, the resulting particle distribu-
tion, �0, is

�0 = � +
@�

@�
�� +

@�

@�
��: (17)

The extreme relativistic limit is taken such that the electric field
lines are entirely transverse. Each slice in the oncoming beam
~��(x; s) is treated as part of an infinite line charge to calculate
the transverse impulse on a beam [6],

(��; ��) = � e2

2��0E0
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2x0; (18)

where all but horizontal and vertical coordinates have been inte-
grated over,

~��(x; s) =

Z
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A new set of coefficients describes the changed slice. Substitut-
ing Equation 15 into Equation 17 gives
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where we have labeled the beams 1 and 2. A similar equation
will exist for beam 2. The closure relationship between Hermite
polynomials allows the solution of C 0 � (1)

nmhkij to take the form

C
0 � (1)

nmhkij = C
� (1)

nmhkij
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F~n���~k;n���j;n0
���j0(s) is the tabulated result of the integral. The in-

tegral of Equation 20 can be broken down into several integrals
of exponentials times polynomials, except for a separable one-
dimensional integral which is integrated numerically and tabu-
lated. The evolution of the beam distribution due to the beam-
beam interaction is reduced to a sum over the coefficients of the
basis functions.

The luminosity, L, can now be calculated as the sum of the
luminosities for each interaction between all pairs of slices.
We also utilize the closure of the Hermite polynomials to re-
duce the luminosity to a form containing tabulated integrals,
Gnmhk(s��0), and expansion coefficients,

L = f
X
��0
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d4� �
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� (�; �; �; !; s��0) �(2)�0 (�; �; �; !; s��0)
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X
��0
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X
i0j0

C
� (1)

nmhkijC
�0 (2)

nmhki0j0Gnmhk(s��0 ): (22)

Equation 22 is a sum over all slices interacting at the point s��0

where the�th slice of beam 1 collides with the�0 th slice of beam
2.

E. Longitudinal phase space

Four effects which directly influence the longitudinal bunch
distribution are being included in the model: synchrotron radia-
tion damping (in both transverse and longitudinal phase spaces),
quantum excitation, RF acceleration, and beam energy changes
during beam-beam collisions. Longitudinal damping is being
modeled by a convolution of the beam distributionand the radia-
tion distributionfunctions. [7] Only terms contained in a descrip-
tion of the beam to a fixed order N are retained. Quantum exci-
tation is being modeled in a parallel fashion. Transverse damp-
ing is modeled using a longitudinalmomentum impulse at the RF

cavity. The magnitude of the kick is a function of l only. Finally,
we have begun to investigate the inclusion of energy changes
during the beam-beam collisions following the approach of Hi-
rata et al: [6] as far as applicable.

III. SUMMARY
By expressing the distributionof a single beam bunch as an ex-

pansion of the two-dimensional quantum harmonic oscillator ba-
sis functions in normalized coordinates, the beam dynamics for
Gaussian and non-Gaussian beams can be calculated. The beam
blowup due to the beam-beam interaction and the luminosity can
be computed directly as a sum over the coefficients in the expan-
sion and tabulated integrals. The characteristics of this approach
complement those of currently used algorithms.
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