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Abstract

In evaluating the wakefield effects of medium energy particles
interacting with a cavity, the integral for the wakefunction must
be carried out on the pipe radius in order to avoid an infinity
due to the finite space charge effect. To obtain the wakefunc-
tions at other radial positions, a proper extrapolation algorithm
is needed. This paper presents the extrapolation method for cal-
culating wakefunctions ofv < c. For cases with low energies,
the slippage between the particle and the fields induces longi-
tudinal smearing of the wakefunctions, and the wakefunctions
inside the beam pipe are found to be weighted averages of the
wakefunctions calculated on the pipe radius. The smearing ef-
fect for calculating the wakefunctions on the axis is related to
R = �z


a , with the smearing effect negligible for largeR. The
usual ultrarelativistic assumption is found to be reasonable for
R � 1:5. For cases withR � 1:5, a weighted average must be
taken to calculate the wakes inside the beam pipe.

I. INTRODUCTION
When a bunch of charged particles traverses a discontinuity in

an accelerator, electromagnetic fields are excited. The particles
experience an energy loss and a momentum change due to these
fields. The longitudinal and transverse wakefunctions describe
these effects and are defined as
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1
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In most cases, the wakefunctions are calculated under the as-
sumption ofv = c, which is a good approximation for high
energy beams. However, there are cases of interest where the
ultrarelativistic approximation is not reasonable althoughv � c.
For example in some FEL scenarios [1], the energy of the elec-
tron beam in the accelerator is in the order of 10-102 MeV, and
the beam bunch length is very short. In these circumstances, the
effect ofv < c can be important.

For this medium energy range, the velocity of the particle
is less thanc and both the space charge and wake fields exist.
The total field satisfies the inhomogeneous wave equation. The
solution of the inhomogeneous equation can be separated into
two parts - a special solution that satisfies the inhomogeneous
equation and the general solutions that satisfy the homogeneous
equation. There is a certain freedom of choosing the special so-
lution. It is preferable, however, to chose a special solution that
satisfies theE boundary conditions at the beam pipe radius, and
the solution for such a system can be obtained analytically [2].
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The special solution then represents the synchronous part (or the
space charge) of the field and the general solution represents the
radiated (propagating) part of the field. For cases withv < c,
integrating the fields within the beam pipe will in general be
infinite since the space charge effect is finite inside the beam
pipe. In order to get meaningful results, one has to separate the
effects of the synchronous field and the propagating field. The
effect of the propagating fields can be separated from the syn-
chronous field by integrating the fields at the pipe radius. The
contribution of the synchronous fields at the pipe radius is zero.
This is numerically advantageous in using codes like TBCI [3]
and ABCI [4]. In wakefunction calculations, it is essential to
integrate only thez component of theE field, which gives the
longitudinal wakefunction. The transverse wakefunction is re-
lated to the longitudinal one through the Panofsky-Wenzel [5]
theorem. Since theEz field is nonzero only in the open gap
region of the cavity, the integral at the pipe radius need only
be carried out within a finite distance. The wakefunctions at
other radii can be extrapolated from the one integrated at the
pipe radius. The extrapolation gives the functional dependence
of the wakefunction on the integral path and the smearing ef-
fects of the wakefunction due tov < c. (The dependence on
the radial position of the source particle is explicitly calculated
numerically because it is well behaved) The total effect of the
fields is the summation of the extrapolated wakefunction and
the space charge effect (within the length of the structure). The
space charge effect can be obtained analytically, and we will not
address it here. Other issues related to the numerical calculation
of the wakefunction forv < c include open boundary condi-
tions at the beam pipe ends to simulate an infinitely long beam
pipe and a higher-order finite-difference algorithm to reduce the
frequency dependent truncation errors for short bunches. These
issues are discussed in Ref. [6]. In this paper, we focus on the
extrapolation of the wakefunction from the pipe radius to the
inside of the beam pipe and the smearing effects due tov < c

II. FUNCTIONAL DEPENDENCE OF THE
WAKEFUNCTION

The derivations of the functional dependence of the wake-
functions presented here assumes that the trajectories of the par-
ticles be straight lines. We study the fields that satisfy the ho-
mogeneous wave equation. For the longitudinal component of
theE field, the equation is [7]

(r2
?
� (�2z � k2))Ez(r; �; z; t) = 0 (3)

The general solution of Eq. 3 in a cylindrical coordinate system
can be expressed as the follows:

Ez(r; �; z; t) =
+1X
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Im andJm are the modified Bessel function and the Bessel func-
tion of the first kind, respectively. The longitudinal wakefunc-
tion of themth mode at (r, �, s = vt � z) is
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At the pipe radiusr = a
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Fourier transforming Eq. (7), we have
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By substituting Eq. (8) into Eq. (5) we have the wakefunction at
radiusr
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where
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From Panofsky-Wenzel [5] theorem, the transverse wake-
function is related to the longitudinal one as

w?(r; �; s) = �

Z s

�1

r?wl(r; �; z
0)dz0 (11)
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Figure 1. Weight functions for� = 0:9948, a = 1:74 cm.

It is clear now that the wakefunction at radiusr is a weighted
average of the wakefunction on the pipe radius. The weight
function has finite width, which means that there is smearing
effect along thes direction due tov < c. The profile of the
weighting function is independent of the bunch length and is a
function ofr=a anda=
 only. The weight functions for mode
m = 0; 1 for � = 0:9948, a = 1:74 cm are shown in Fig. 1.
The halfwidth of the weight function for a givenr=a is linear on
a=
.

At ultrarelativistic limit, the Bessel functions in the weight
functions reduce to
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The longitudinal wakefunction is independent ofr for m = 0
and scales asrm for other modes whereas the transverse wake-
functions scale asrm�1. There is no smearing effect along the
s direction.

III. THE SMEARING EFFECTS FORv < c

Since the width of the short range wakefunction is roughly
proportional to the bunch length, while the width of the weight
function depends only on the energy and the cavity structure,
the smearing effect is bunch length dependent. If the width of
the weight function is much smaller than the bunch length, the
smearing effect will be small, but if the width of the weight func-
tion is larger than the bunch length, the smearing effect is strong.
Fig. 2 shows the wakefunctions of a 3 mm (rms) bunch with
� = 0:9948 in the CEBAF 5-cell cavity at radiir = 1:74 cm
andr = 0 cm. The halfwidth of the weight function for this
case is 1.2 mm, which is smaller than the rms bunch length, and
the smearing effect is negligible in this case. Fig. 3 shows the
radial dependence of the wakefunctions of a pillbox cavity for a
short bunch with bunch length of 0.5 mm (rms) and� = 0:9948
at radiir = 1 andr = 0 cm. The halfwidth of the weight func-
tion for this case is 0.66 mm, which is larger than the rms bunch
length. The smearing effect is significant. The peak of the wake-
function becomes wider and lower atr = 0. The wakefunctions
also show the slippage effects between the charge and the fields,
which results in none zero wakefields ahead of the bunch.

The smearing effect of the short range wakefunction for a
given energy depends not only on the energy (
) of the beam,
but also on the bunch length. The ratio

R =
�z


a
(16)
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Figure 2. Wakefunctions for� = 0:9948 (5 MeV),�z = 3 mm.
CEBAF 5-cell cavity.
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Figure 3. Wakefunctions for� = 0:9948. �z = 0:5 mm.
Pillbox cavity.

provides a measure of the smearing effect. LargeR implies
weak smearing. The relative difference of the peaks of the short
range wakefunctions calculated at the pipe radius and on the
axis of a pillbox cavity as a function ofR is shown in Fig. 4.
ForR = 1:5, the relative difference is less than10%.

TheR value of Eq.(16) can be used to determine whether the
beam can be treated as ultrarelativistic in the wakefield calcula-
tion. The relative difference of the wakefunctions as a function
of R may be slightly different from the one shown in Fig. 4
for different structures and bunch length. It is found from the
numerical simulations that a difference of the peak of less than
10% can in general be obtained forR > 1:5, and the beam
can be assumed ultrarelativistic. ForR < 1:5, the smearing
effect is not negligible, and wakefunctions atr < a should be
calculated by use of the weighted average. For example, con-
sider the CEBAF cavity with a beam pipe ofa = 1:74 cm. For
�z=3 mm, the beam can be treated as being ultrarelativistic for

 > 8:7 or E > 4:5 MeV. For �z = 0:5 mm, however, the
beam can be treated as being ultrarelativistic only for
 > 52 or
E > 26:5 MeV.

IV. CONCLUSION

The effects of slippage between the beam and the fields are
important in the cases of low energies and short bunches. The
R value defined in Eq. (16) provides a measure of the smearing
effect on the wakefields for a non-relativisticbeam. The particle
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can only be assumed ultrarelativistic for cases with largeR.
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