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Abstract

Many explanations of halo formation in high current ion beams
require the existence of particles which are outside the beams
central core. We propose a mechanism which is capable of mov-
ing some particles outside the core. Specifically, we consider a
2-D KV beam which is started into a uniform density breathing
oscillation by some mismatch in the transverse focusing pattern.
We then consider perturbations with non-linear space charge
density and find that they can be unstable against small oscil-
lations for certain ranges of mismatch and tune depression. The
stability limits in the mismatch/tune depression space have been
computed for the first three azimuthally symmetric modes with
non-linear charge density. It appears that even modest values of
mismatch and tune depression can lead to instabilities which are
capable of moving particles outside the core of the beam.

I. INTRODUCTION
Interest has arisen recently in using ion linacs in high current

applications. In order to keep the beam loss to the order of 1 ppm
to avoid serious linac activation, it is necessary to understand
emittance growth and halo formation in great detail in order to
produce anacceptable design.

Accordingly, recent attention has been focused onunder-
standing the mechanism(s) by which halos are produced. This
includes a review of observations and related simulations[1], a
variety of simulations and experiments[2], [3]. Several models
have been constructed to explore resonances between particle
oscillation frequencies and the periodicity of the focusing sys-
tem or core oscillation modes[4], [5]. Many of the simulations
show the onset of chaotic motion at high space charge levels.

In a recentpublication[6], we proposed a simple model in
which a K-V beam, excited into a uniform density “breathing”
mode by some sort of mismatch, interacts resonantly with indi-
vidual oscillating ions. If the ions find themselves outside the
core for part of their oscillation, the resulting non-linearity of
the ion oscillations can lead to a phase lock with the breathing
oscillation, producing a halo whose parameters can be predicted
and whose appearance matches that in simulations performed by
Wangler and by Ryne [7]. The unanswered question is: “What
is the mechanism by which ions initially escape from the core in
order to participate in the formation of the halo?”

Obviously, any unstable longitudinal or transverse collective
modes involving the core are capable of moving particles out-
side the core. Studies of the transverse stability of a matched
K-V beam[8], [9] have shown that instabilities exist for tune de-
pressions (ratio of ion oscillation frequency with space charge
to that without space charge) of 0.4 or less. In the present paper,
we analyze the instabilities of a breathing K-V beam for various
collective modes involving non-uniform charge density and find
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that modes involving a significant breathing amplitude will be
unstable at tune depressions as high as 0.7 or 0.8.

II. BREATHING MODE
The envelope equation of a KV beam is

a00 + k2a =
I

a
+
�2

a3
; (1)

wherea is the beam radius, the prime stands ford=dz, k is the
tune due to the external linear restoring force,I is the perveance
defined byI = eI0Z0c=2�mv
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0
; and where�� is the transverse

emittance of the beam. HereZ0 = 120� ohms is the impedance
of free space,I0 is the beam current andv0 is the particle's axial
velocity. We assume thatk2 is independent ofz in the present
work. If we start witha(0) = a1, a0(0) = 0, an integral of Eq.
(1) gives
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which enables us to obtain the other value ofa(� a2) at which
a0 = 0, as well as the period of the breathing motion.

We now seta2 = ��, and change the independent and
dependent variables fromz; x; y to � =

R
dz=�; u(�) =

x(z)=
p
��; v(�) = y(z)=

p
��, such that

�u+ u = 0 ; �v + v = 0; (3)

where the dot denotes derivative with respect to�. Thus the
breathing mode can be described by specifying� as a function
of �, with period�0. The transformation clearly depends on the
size of the “mismatch”, that is, on the relative amplitude of the
breathing oscillation. If we scale� so that�(�) = �(�)=k and
define� = I=k�; The envelope equation can be written as
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We note that a matched beam (zero breathing amplitude)
has the matched amplitude�0 = �=2 +

p
1 + �2=4 and

that the tune depression for a matched beam is given by� �p
k2 � I=a2

0
=k=1=�0=

p
1 + �2=4��=2:

III. PHASE SPACE DISTRIBUTION
We now wish to consider small perturbations from a uniform

charge density breathing mode in the phase space distribution.
For this purpose, we use the variablesu(�), v(�) and� and
write

f(u; v; _u; _v; �) = f0(u; v; _u; _v) + f1(u; v; _u; _v; �); (5)

where the unperturbed distribution (including the breathing
mode) is

f0(u; v; _u; _v) = (�0=�
2)�(u2 + v2 + _u2 + _v2 � 1): (6)



Here�0 = I0=v0 is the line charge density of the beam. The
charge density (in thex; y space) is then
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We assume that the electric field due to�1 is derivable from a
scalar potentialG(u; v; �) such that
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The equations of motion, including the force due to the non-
uniform charge distribution, are
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If we now write

f1(u; v; _u; _v; �) = g(u; v; _u; _v; �)f 0
0
(u2 + v2 + _u2+ _v2); (11)

keeping only terms linear inf1 or�1 (orG), the Vlasov equation
becomes
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where the right hand side is
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Equations (9) and (12) are coupled integro-differential equa-
tions. Since the operator on the left side of Eq. (12) corresponds
to the sinusoidal orbits in Eq. (3), Eq. (12) has a formal solution
which can be written as

g(u; v; _u; _v; �) =

Z
�

�1

d R(u0; v0; _u0; _v0;  ); (14)

whereu0 = uc� _us; v0 = vc� _vs; _u0 = _uc+ us; _v0 = _vc+ vs;

with c � cos(��  ); s � sin(��  ):

We now proceed, as in the analysis for a matched K-V
beam[8], to guess at the form of the potentialG(u; v; �) and to
determine the perturbed phase space distributiong(u; v; _u; _v; �)

using Eq. (14). Using Eqs. (11) and (9), we then obtain
@2G=@u2 + @2G=@v2 and require that it agree with our guess
for G.

Remarkably, our guess, which is almost identical to the form
used for the matched K-V beam, works once again.

We now conjecture thatG(u; v; �) is

G(u; v; �) = P (�)F (u; v) (15)

with

F (u; v)=(u+ iv)m2F1(�j; m+ j; m + 1; u2 + v2)

=djm
X
`

(�1)`(m+ j + ` � 1)!
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(u+ iv)`+m(u� iv)`; (16)

wheredjm = j! m!=(m + j � 1)!. HereP (�) is a function
periodic in� (with period�0, the same as that of the breathing
oscillation) which is yet to be determined. The corresponding
charge density, according to Eq. (9), is
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withm andj�1 being the number of azimuthal and radial nodes
in the perturbed charge density.

Requiring the self-consistency of Eqs. (9) and (14), we obtain
an integral equation forP (�)
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Z

�

�1
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where
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r
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To recapitulate, we have confirmed that the conjecture for the
electrostatic potential in Eq. (15) leads to a perturbed phase
space density in Eq. (11) which reproduces the perturbed space
charge density corresponding to the potential in Eq. (15), pro-
videdP (�) satisfies the integral equation in Eq. (18).

IV. DIFFERENTIAL EQUATION FORP (�)

The integral equation forP (�) in Eq. (18) can be converted
to a linear differential equation with periodic coefficients. As
an illustration, we consider the casej = 2, m = 0, and take
successive derivatives of Eq. (18) with respect to�, obtaining
contributions from both the upper limit of the integral and the
integrand. And then we construct a linear combination ofP (�),
�P (�) andP iv(�) in which the integrals cancel. Specifically

P iv+(20 + 2��) �P+4� _� _P+(64 � 4�� + 2���)P =0: (20)

Since�(�) in Eq. (4) is a periodic function of� with period�0,
Eq. (20) is a Mathieu-like equation forP (�). If we let V be
the four-component vector(P; _P; �P;

:::

P ), Eq. (20) can then be
written as the single4 � 4 matrix equation_V = TV where the
matrixT depends on� because� depends on�.

For generalj andm, by taking2j+m or2j+m+1 derivatives
of P (�), it is always possible to construct a linear combination
which eliminates all the integrals, as we did in Eq. (20). The
order of the resulting differential equation is2j +m form even
or 2j +m+ 1 for m odd, as is also the dimension of the vector
V and the matrixT .



V. NUMERICAL STUDIES
To determine the stability of a specific mode of density per-

turbation, we first need to solve the equation of the envelope
oscillation shown in Eq. (4) numerically. With the solutions
of �(�), we can numerically integrate the matrix form of the
differential equation forP (�). The eigenvalues of the transfer
matrixT for a breathing period then determines the stability of
the mode denoted byj;m for the space charge� and the mis-
match parameter�1. Specifically, the mode will be unstable if
the absolute value of any of the eigenvalues ofT is greater than
1.

Starting from the integral equation forP (�) in Eq. (18), we
can also make the transformation to differential equations for
(j;m) = (3; 0) and (4,0),and thus determine their stabilities
with respect to different parameters.

As for the matched beam, i.e.,� = �0 = constant, the sta-
bility limits of the modes(j;m) = (2; 0); (3; 0) and (4,0), are
where�limit = 0.2425, 0.3859 and 0.3985 respectively. In fact,
m = 0 is the most restrictive mode for allm, andj = 4 is the
most serious mode that gives the the largest threshold value of
�, i.e. the smallest space charge limit, for all(j; 0) modes[8].
Therefore, the (4,0) mode is the least stable mode for the space
charge limit of a KV beam. In Figs. 1, we show the stability dia-
gram for these three cases in the��� space, where� � a1=a0.
The values of�limit on the� = 1 axis for each case is confirmed
in the figures.

The cusps appearing in these diagrams are caused by reso-
nances of the mode frequency. In Fig. 1(a), the deep fissure
down to the matched parameter� = 1 is where the phase ad-
vance of the (2,0) mode oscillation during one period of the
breathing mode is�, when�limit = 0:5235. Note that for this
resonance the breathing frequency is twice the mode frequency.
We believe that the other slits appearing in the stable domains
are also due to resonance for particular parameters of tune de-
pression and mismatch. As for the higher modes (3,0) and (4,0),
the� = � resonance occurs outside of their stability limits. That
is why the deep fissure that meets the� = 1 axis is not seen in
either thej = 3 or the j = 4 cases. One can also see that,
asj increases, not only does�limit moves “backward”, i.e., to
smaller space charge, but also the stable band width for the mis-
match parameter� becomes narrower. This implies, at least up
to j = 4 for a KV beam, that the area of stability decreases asj

increases.
We are currently using numerical orbit simulations to confirm

the stability regions shown in Fig. 1.
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Figure. 1. Stability diagram of��� space, for (a)j = 2;m = 0;

(b)j = 3;m = 0; and (c)j = 4;m = 0:


