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I.  INTRODUCTION

An indispensable aspect of the bunched beam instability
mechanism is the variation of the particle distribution with
respect to the beam intensity.  This  density variation can
be shown as the evolution of radial modes.  The radial
modes, which are determined by the stationary particle
distribution and the impedance, represent the coherence of
the particle density variation governed by the Vlasov
equation.  Using this coherence in the beam instability
analysis gives rise to not only the computational efficiency
but also the physical insight into the instability mechanism.
The evolution of the radial modes displays several
interesting properties for the cases without and with
synchrotron frequency spread. If the azimuthal mode
coupling cannot be neglected, then corresponding to each
coherent frequency shift there exists an extended radial
mode which includes the interactions from other azimuthal
modes. In this article, the radial mode evolution and the
related physical implications will be discussed, which are
useful for the understanding of the beam instabilities, and
also useful for the beam diagnostics.

II.  RADIAL MODE

If the azimuthal mode coupling is neglected, then the
Sacherer integral equation can be written as an eigenvalue
problem [1-4],
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where ω is the coherent frequency shift, m is the
azimuthal mode number, ωs  is the synthrotron frequency.
The system matrix M(m ) represents a feedback determined
by the particle distribution of the beam and the impedance,
and it is proportional to the beam intensity. The eigenvector
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Note that the weight function is defined as
W r d dr r( ) = − ⋅( )ψ 0 / , where ψ0 is the stationary particle

distribution. The radial mode together with the rotation
factor ejm0  determine the perturbation particle distribution in
the phase space,
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The projection of this perturbation on the phase
deviation axis is the line density, which can be observed to
obtain the information of the radial mode variation.

Given stationary distribution and impedance, the radial
modes represent coherent particle density evolution,
governed by the Vlasov equation.  This coherence implies
the discreteness of the modes and the corresponding
frequency shifts. The orthogonal polynomials used in [2,3],
i.e. for a Gaussian distribution, the generalized Laguerre
polynomials, and for a parabolic, the Jacobi, can guarantee
the convergence. In Fig. 1, the weighted orthogonal
polynomials for a Gaussian distribution and the Hankel
spectra of these orthogonal polynomials are shown for the
azimuthal mode m=1.  We may observe that the spectra of
the polynomials cover from the low frequency to the high,
therefore, the larger dimension expansion of the radial
modes implies to include higher frequency components.
For some impedances such as the RF cavity, the
convergence is very fast. Usually an expansion of a few
dimension gives rise to a good approximation, and a few
radial modes represent the whole system well.

Fig. 1 Orthogonal Polynomials and Spectra

Using the coherence of the particle density evolution,
solving of the eigenvalue problem in (1) is equivalent to
decoupling the system into several independent
subsystems, each one with its own inherent frequency   and
representation of its radial mode.

In general, different  orthogonal basis can be chosen for
the radial mode expansion, the convergence will however
be affected. The problem will be discussed in Section V.

Several properties associated with the radial mode are
mentioned at this point. 1) For a non-zero beam intensity,
the coherent frequency shift ω is linearly proportional to



the intensity. 2) The eigenvectors and therefore the radial
modes are invariant with respect to the intensity. 3) The
amplitude of the radial mode is arbitrary, since the scaling
of the eigenvector is arbitrary. 4) The damping or
antidamping of these modes are independent for each other.

The eigenvalue problem shown in (1) is the simplest
one in the perturbation problem, it also has a most popular
application, especially in a regime of low intensity.  It,
however, cannot satisfy the situations with synchrotron
frequency spread, or if the radial modes are affected by
other azimuthal modes, i.e. mode coupling, or if due to high
intensity the potential well is distorted.  Under these
conditions, equation (1) needs to be modified.

III.  FREQUENCY SPREAD

For the synchrotron frequency spread due to the RF
nonlinearity, the equation (1) is modified as,
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where N(m ) represents the frequency dispersion, which does
not depend on the beam intensity. This matrix introduces no
instability mechanism, and it is dominant at low intensity.
At high intensity the dominance is transferred to the matrix
M(m ), and the transition process shows the Landau damping.

We note that some properties associated with the radial
modes are changed. 1) The eigenvalues are no longer li-
nearly proportional to the beam intensity. 2) The radial
modes are no longer invariant to the intensity.

Fig. 2  Frequency Spread and Radial Modes

An example of the m=1 mode with RF non-linearity
induced synchrotron frequency spread is shown in Fig. 2,
where the coherent frequency distribution together with the
corresponding radial functions at low intensity are shown.
In Fig. 3 a comparison of the unnormalized perturbation
line densities with and without frequency spread is shown.
It can be shown that for a narrow-band impedance such as
the RF cavity, an antidamping mode involves more the

particles in the bunch center, and a damping mode involves
the bunch edge [5], which can be observed through the line
density variation. In a case of antidamping, the radial
modes responsible for the instability gradually expand from
the beam center to the edge, as the beam intensity is
increased, which can be used to interpret the Landau
damping.

Fig. 3 Comparison of Line Densities

The effect of frequency spread itself generates no
coherent distribution density evolution.  As the beam
intensity increases, the feedback governed by the Vlasov
equation becomes effective, and coherence is taking place.
The approach used in (4) is to approximate the system by a
number of subsystems.  This approach is convenient for the
computation, and also allows physical insight into Landau
damping.  For most impedances, such as resonators with
not too high resonant frequencies, only a small dimension
of expansion is needed to get a good result [5].

IV.  MODE COUPLING

When mode coupling is considered, we can write,
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where only the coupling between the mode m and m’ is
included. The equation can, however, be easily extended to
multi-mode coupling and to the case with frequency spread.
Comparing (5) with (4), we find some similarities, such as
that both are different from (1) with an intensity
independent matrix in the  system matrix. There are also
differences such as that the matrix M in (5) is not
symmetric as is the case in (4).

In general the orthogonality of the orthogonal
polynomials between different asimuthal modes is not



necessarily guaranteed. To quality (5) as an eigenvalue
problem, the rotation factors ejm θ has to be included in the
orthogonal basis. Therefore, the radial modes in a mode
coupling situation are implicitly defined by the following
distribution,
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We observe that the radial mode in a mode coupling
lost its sole dependence on r, it, however, kept the most
important characteristic, which is that the whole
distribution pattern of a radial mode in the phase space
bears an identical coherent frequency ω .

Consider coupling between the modes m=1 and m=2.
As an example, as the intensity increases from 1 to 9, the
line densities of the two responsible radial modes in the
two azimuthal modes are shown in Fig. 4. The evolutions of
these modes can be observed.

Fig. 4   Line Density Evolution for Mode Coupling

An interesting aspect of experimentally observed radial
modes is reported in [6]. The observed modes are discrete,
which agrees with the concept of the radial modes applied
in this article. Also reported are some problems in
observing these modes. We note that below the instability
threshold often the radial modes responsible to the coupling
are more difficult to observe, because usually before the
coupling they are damped, not antidamped. Meanwhile
there are other modes, which are less damped or not
damped at all, therefore if the beam is excited, these
modes are easily observed. They, however, have different
coherent frequencies from the modes responsible for the
instability thresholds. This can be shown by an example for
the coupling between the m=1 and m=2 modes. The
damping is especially strong for the m=±1 coupling, which
is in fact the first Robinson criterion.

V.  POTENTIAL WELL DISTORTION

With potential well  distortion, two things happened.
First, the stationary distribution may depend on not only r
but also  θ . For a Gaussian distribution, this problem can
be easily treated. Second, the synchrotron frequency
becomes dependent on several variables, including the
stationary distribution, which itself is nonlinearly dependent
on the beam intensity. Considering that the stable phase
shift can be corrected by the RF phase feedback, and
assuming that the distortion is not so severe that the
original orthogonal polynomial expansion still can be used,
the problem can be formulated similarly to equation to (4)
as,

ω ω α α−( ) = +( )( ) ( ) ( ) ( )m mG MSC
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where G(m ) can be calculated from the spectrum of the
stationary distribution.  Since the stationary distribution is
distorted by the beam intensity induced feedback, this
matrix is no longer constant, but non-linearly intensity
dependent. It is, however, still real and symmetric.  A
radial mode evolution can be studied for this formulation.

In [7] a method using meshes in the radial direction as
the orthogonal basis in the expansion is proposed, which
has a potential to include perhaps more extended instability
mechanisms. Although the general convergence is not
considered as a problem if a large dimension expansion is
used, the very concept of the radial modes is, however,
buried in the large amount of eigenvectors, most of them
represent in fact incoherent motions [8].

By using well established orthogonal polynomials for a
non-distorted stationary distribution and using (7), the
radial modes can be obtained and used to help the
understanding of the mechanism of the instabilities. The
convergence and the efficiency in using these polynomials
with potential well distortion should be studied analytically
and experimentally.
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