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Abstract

The PEP-II experimental detector includes a strong 1.5 T
solenoid field in the interaction region (IR). With the fringe
fields, the solenoid extends over a range of 6 m. Additional
complications are that 1) it is displaced longitudinally from the
interaction point (IP) by about 40 cm, 2) neither beam is parallel
to the solenoid axis, and 3) the solenoid overlaps a dipole and a
quadrupole on either side of the IP. Ineach half IR the correction
system includes a set of skew quadrupoles, dipole correctors and
normal quadrupoles to independently compensate the coupling,
orbit perturbation, dispersion and focusing effect produced by
the solenoid. The correction schemes for the Low Energy Ring
(LER) and for the High Energy Ring (HER) are described, and
the impact on the dynamic aperture is evaluated.

I. INTRODUCTION

The current design of the PEP-II experimental detector
calls for a 1.5 T solenoid field. The solenoid length, includ-
ing fringe fields, is about 6 m, and the total integrated field is
5.7 Tm. The different beam energies, 3.1 GeV for positrons and
9 GeV for electrons, mean that displacing the solenoid center
about 40 cm in the direction of the high energy beam (HEB) im-
proves the detector acceptance of the particles produced in the
beam collision. The solenoid overlaps a horizontal dipole B1
and the first final doublet (FD) quadrupole QD1 oneach side
of the IP. Therefore a superposition of magnetic fields exists in
these magnets.

The beams are horizontally separated in B1 and in QD1
making the trajectories of the two beams neither identical nor
parallel to the solenoid field. The resulting angle between the
beams and the solenoid axis leads to a perturbation of the ver-
tical orbit. The low energy beam (LEB), generally, experiences
a larger orbit perturbation. With an antisymmetric beam trajec-
tory about the IP, the effect on the LEB can be reduced by ad-
justing the horizontal tilt angle between the solenoid direction
and the beam at the IP. This will bring the LEB closer to the
solenoid axis and will provide partial cancellation of the orbit
perturbation. The optimum tilt angle for the PEP-II solenoid is
about 20 mrad which provides a compromise for the orbits of
both beams. The top view of the solenoid with respect to the
beam trajectories is shown in Figure 1.

II. SOLENOID FIELD MODEL

In our calculations we used a simplified solenoidal field
model which assumes a constant 1.5 T field over the effective
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Figure 1. Top view of the beam orbits in the solenoid.

length of 3.8 m. Figure 2 shows the shape of the model (solid
line) and of the realistic field (dash). The main difference is
that the realistic field has an extended soft fringe field while the
model solenoid has hard edges.

We used the MAD code [2] for numerical analysis. Cur-
rently, there is no provision in MAD for a quadrupole or a dipole
superimposed with a solenoid, so we used an approximation to
model the lattice. Within the solenoid, the B1 and QD1 mag-
nets were replaced by the same length solenoid magnets sliced
in 5 cm pieces, and a thin lens dipole or a quadrupole magnet
was placed in the middle of each piece to produce the effect of
B1 or QD1. The solenoid pieces in the model are aligned along
the beam and will not generate orbit perturbations. To simulate
the orbit effect, additional thin lens orbit kickers were uniformly
distributed through out the solenoid. The kicker strength was
calculated according to the beam orientation in the solenoid.

At the end of the solenoid the beams are not centered on
the solenoid axis and, thus, receive a vertical orbit kick from the
fringe field. In the model we simulated an off-centered fringe
field by using a coordinate transformation in MAD.

The orbit effect was verified independently with the code
MAGBENDS [3] which uses the superimposed magnetic field
from all elements, and a realistic solenoid fringe field. There is
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Figure 2. The model and the realistic solenoid field.



reasonable agreement between the two models, and the differ-
ence can be accounted for by different fringe models.

III. CORRECTION STRATEGY
The following solenoid effects need to be corrected: 1) the

coupling betweenx andy betatron oscillations, 2) vertical and
horizontal orbit perturbations, 3) vertical dispersion distortion,
and 4) solenoid focusing. Our goal was to cancel these effects
at the IP and everywhere outside the IR. The asymmetry of
the solenoid requires an independent local correction system on
each side of the IP. Generally, for each half IR we need: 1) six
skew quadrupoles to compensate the coupling and vertical dis-
persion, 2) two vertical and two horizontal orbit correctors, and
3) eight variable normal quadrupoles to match the Twiss func-
tions and the horizontal dispersion.

Due to the simplecticity of a transfer matrix there are four
independent coupling coefficients. In matrix formalism the be-
tatron coupling is described by the off-diagonal 2�2 matrix in
the 4�4 transfer matrix. Therefore, for local coupling correc-
tion we need to cancel the (1,3), (1,4), (2,3) and (2,4) terms in
the transfer matrix between the IP and the end of the IR. Simi-
larly, the vertical dispersion can be described by (3,6) and (4,6)
terms in a 6�6 matrix.

For analysis of the optimum skew quadrupole positions we
used the projection method developed in Reference [1]. In this
approach, an original lattice with distributed coupling elements
is replaced by an equivalent lattice with the same transfer matrix,
but with all coupling elements placed at one point, usually the
IP. The matrices of the coupling elements have to be modified
after this transformation. For instance, an original matrixQ of
a thin skew quadrupole will be replaced by a new matrixR =

M
�1
QM , whereM is an uncoupled matrix from the IP to the

original position of the quadrupole. With all coupling elements
placed at one point, the rest of the lattice is decoupled, and the
coupling terms will add at the IP. It is, therefore, easy to analyze
the effect from different coupling elements.

Consider one half of the IR starting from the IP. Sup-
pose the Twiss functions at the original position of a thin skew
quadrupole are�, � and�. The equivalent quadrupole at the IP
will have a new transfer matrix with the following terms:
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is a quadrupole strength,q = f

p
�x�y , ��

is a�-function at the IP,C = cos�,S = sin� andDx is the hor-
izontal dispersion at the original position of a skew quadrupole.
The optimum positions for four coupling correctors will be at
(�x, �y) = (�/2, 0), (�/2, �/2), (0, 0) and (0,�/2) (mod�), in
which case each skew quadrupole generates only one non-zero
coupling term at the IP, thus providing an orthogonal correction.
The other two skew quadrupoles will provide an orthogonal ver-
tical dispersion correction if placed at�y = 0 and�/2 (mod�)
whereDx is large.

In a similar way, the solenoid can be moved to the IP. The
projected solenoid transfer matrix, which can be calculated nu-
merically using MAD, is equal toS = Moff

�1
Mon, whereM

is a matrix from the IP to the end of a solenoid, for the solenoid
turned off and on, respectively. For a non-overlapped solenoid
only two major coupling terms would exist, (1,3) and (2,4),
which is just the rotation angle of the betatron planes. The inter-
action between the solenoid and the quadrupole gives rise to the
other two coupling terms. Figure 3 shows how these terms de-
pend on the overlap with the B1 and QD1 magnets. The results
correspond to the longer side of the solenoid in the LER, where
the effect on the beam is the largest. In Figure 3 the solenoid
starts at the IP and its lengthL is varied from 0.5 m to the nom-
inal value of 2.3 m, while the integrated field stays constant at
3.45 Tm. For a non-overlapping solenoid (dashed line) the cou-
pling terms are almost constant withL. If the B1 and QD1 mag-
nets are present, then the terms start changing after the solenoid
expands into QD1 located at 0.9 m from the IP (solid line).

Figure 4 shows the skew quadrupole terms projected to the
IP as a function of position in the IR. The terms varyaccording
to formulas (1), and the skew quadrupole strength was fixed at
10% of the main arc quadrupole strength. The corresponding
solenoid term at the IP is shown by a dashed line. Note, that the
hardest solenoid term to correct in this case is the (1,4) term. It
is generated from the overlapped QD1 and grows quadratically
with the overlapped length. This term is much smaller for the
shorter side of the solenoid since QD1 is not fully overlapped
on this side. In a real lattice it is usually not possible to find
the ideal phase positions for the quadrupoles. Therefore, all six
quadrupoles may generate all six terms, and a combined set of
equations has to be solved.

To locally compensate the orbit at the IP, the general strat-
egy is to use two dipole correctors for each half IR and for each
betatron plane, and to locate them at orthogonal phase positions
of 0 and�/2 (mod�) from the IP.

Finally, the focusing perturbation has to be corrected with a
minimum of eight variable normal quadrupoles ineach half IR.
The solenoid focuses in both planes. For the LEB it generates
a quadrupole component that is about 1% of the QD1 strength.
The skew quadrupoles affect the optics as well. More normal
quadrupoles can be varied if additional constraints are imposed.
For instance, in order to minimize perturbation of the chromatic-

Figure 3. Projected solenoid coupling terms at the IP.



Figure 4. Projected skew quadrupole terms at the IP.

Figure 5. Orbit due to solenoid in the LER.

ity correction, we kept the�-functions and phases unchanged
at the local sextupole positions with the solenoid on. In all, in
each half IR we adjusted the two FD quadrupoles by 1-2% in
strength, 11 normal quadrupoles in the LER, and 9 quadrupoles
in the HER.

IV. RESULTS

We tried a variety of possible skew quadrupole positions
in order to minimize their maximum strength. Skew quadrupole
positions next to the local sextupoles are effective because of the
large� function and because the�I transformation between the
two skew quadrupoles makes it possible to independently con-
trol the coupling and the vertical dispersion. On the longer side
of the solenoid the important skew quadrupole position is near
the final doublet, where the� values are large and the phase pro-
vides the best correction of the (1,4) term. Because of the large
orbit perturbation, the first vertical orbit corrector was placed
near the FD. We did not place any elements for the solenoid cor-
rection between the paired local sextupoles in order to preserve
the�I transformation. The positions of the skew quadrupoles
and of the orbit correctors on two sides of the IR are symmetric
about the IP.

All correction strengths were calculated numerically using
MAD. Table 1 shows the skew quadrupole strengths for the two
rings that independently compensate the long and the short side
of the solenoid. The strongest skew quadrupole occurs in the

Corrector LER HER
name Long Short Long Short

SQ1 -0.07210 0.01479 -0.00389 0.00076
SQ2 0.02405 -0.00502 0.00369 -0.00110
SQ3 -0.00434 -0.00052 -0.00039 -0.00003
SQ4 0.00271 -0.00110 0.00054 0.00012
SQ5 0.02638 -0.02020 0.00861 -0.00455
SQ6 0.00866 -0.01176 0.00202 -0.00360

Table 1: Skew quadrupole strengthLq
B�

dBx

dx
(m�1).
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Figure 6. LER dynamic aperture for 5 seeds (dash).

LER near the final doublet, on the longer side of the solenoid, to
correct the (1,4) term.

Orbit perturbations caused by the solenoid in the LER are
shown in Figure 5. If a soft fringe field is included instead of the
hard solenoid edges, then the maximum vertical orbit would be
slightly larger than 6 mm.

Finally, the effect of the solenoid on dynamic aperture was
evaluated. Typical reduction of the aperture due to the solenoid
is about 2-4�, and the final aperture including machine errors
is close to 10�. An example of the LER short term dynamic
aperture with the solenoid is shown in Figure 6.
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