
DESIGN OF THE COMMISSIONING SOFTWARE FOR THE AGS TO RHIC
TRANSFER LINE �

C. G. Trahern, C. Saltmarshy, T. Satogata, J. Kewisch,
S. Sathe, T. D' ottavio, S. Tepikian, D. Shea

Brookhaven National Laboratory, P.O. Box 5000
Upton, New York 11973

Abstract

RHIC acceleratorphysicists and engineers have collaboratively
specified the control system software for the commissioning of
the AGS to RHIC transfer line (ATR) to occur in the fall of 1995.
This paper summarizes the design and progress to date. We dis-
cuss the basic physics/engineering device model that we use to
understand process and data flows, and describe the architecture
and tools we will use to build the application level software.

I. INTRODUCTION

The AGS to RHIC transfer line will be commissioned in the
fall of 1995. In preparation for the commissioning of RHIC in
1999, prototypes for some parts of the RHIC control system are
being prepared to commission the transfer line.

The basic assumptions in our design effort are 1) the use of
object oriented (OO) coding throughout, both at the embedded
systems/hardware level as well as in physics level applications,
and 2) a sequencing and interprocess communication protocol
implemented using a program known asglish [1]. Given these
assumptions, the design of the control system has proceeded in
two stages. In the first stage we took the list of requirements
for the commissioning test and made a general analysis of the
data and process management needed to meet these goals. In
the second stage we have prioritized the requirements and orga-
nized the work of the acceleratorphysics and control groups to
implement the relevant systems.

II. ACCELERATOR PARAMETER OBJECTS

High-level requirements for ATR commissioning range from
the ability to control currents on individual power supplies to
adjusting steering corrector elements in concert to produce the
desired orbit deviation as measured by an assembly of beam po-
sition monitors (BPMs). In order to conceptualize the entire
range of applications, a set of data models was created. For
each accelerator parameter we define an object which contains
the following data:

Parameters (e.g., tune, chromaticity, magnet current, etc.)
are the set points that describe the desired state of the accel-
erator. Parameters are functions of time. The parameter value
at any time is obtained by specifying the values atstep-stones
and using an appropriate interpolation method. In most cases
the step-stones will coincide with the events on the accelerator
event line. The control system can modify future step-stones,
while present and past step-stones are not changeable.

�Work performed under the auspices of the U. S. Department of Energy

All quantities that prescribe the state of theaccelerator are pa-
rameters. The parameters are therefore redundant. A system of
processes ensures that the parameters are consistent. This allows
the operator to describe his goal directly. He can set any param-
eter and leave the task of finding the corresponding hardware
settings to the control system.

Measurements are the actual readings from the machine
hardware. (For most parameters a direct measurement is not
available.) They are independent of the parameters with the
same name. Although some hardware devices include the set-
ting and measurement of an accelerator parameter in one mod-
ule, this is the exception.

Trims are changes to the accelerator parameters that enforce
desired behavior. Trims are only used in objects where a mea-
surement is available. Ideally, trims make the value of the pa-
rameter and the measurement the same.

Method data are data that determine how to convert de-
pendent parameters. Methods often change during operations.
For example, given the desired orbit the method data describes
which correction dipoles are used to move the orbit.

Accelerator knowledge is configuration information about
the accelerator. This data changes only when the machine or the
control system is reconfigured. Examples are lattice informa-
tion, host names, power supply names and magnet data.

In order to describe the idea we resort to the methodology
of data flow diagrams[2]. The general picture is shown in Fig-
ure 1 and a more complete discussion of this model can be found
in [3]. In the figure processes are defined which perform the fol-
lowing data transformations:

1. Calculation of all dependent parameters, if the new param-
eter is changed.

2. Update of the new parameter if a parameter on which the
new parameter depends changes.

3. Measurement of the parameter, if possible, and generation
of an alarm if outside limits.

4. Prediction of trims.
A set-request from the operator or sequencer or a higher level

object is first checked for semantics and for range in the “vali-
date and sequence” process. Method data is used for this check.

If the request is valid, the parameter is set in the parameter
data store. The “validate and sequence” process administers the
step-stones in the parameter store. The parameter is passed on
to the “calculate lower parameter” process. Method data is used
to determine which lower level parameters are used to do the
change. The process may also use other parameters and accel-
erator knowledge for the calculation.

The calculated parameters are sent to appropriate object(s)
which internally have the same structure as this object: the de-



Validate &
Sequence

Method

Parameter

Alarm Predict trims

Trims

Other objects

Combine

Calculate lower
level parameters

Next level object

Calculate this
level parameter

Uncombine

Accelerator
knowledge

Improve model
(offline)

Measurements

Measure

Parameter to be installed

next level
parameter

Best value of
next level parameter

Best value of this level
parameter

Status
Actual parameter
set point

Best value reques-
ted parameter

requested
parameter

Set parameter
request

Status from
lower level

Figure 1. Data Flow Diagram for Parameter Object

sign is recursive. The lower level object returns the set pa-
rameter or, in the case of error, an error message and the best
achievable parameter value which is passed to the validate and
sequence process.

The validate and sequence process checks the success of the
set operation and fields asynchronous errors. It updates the pa-
rameter value in the data store and returns the value or best value
to the next higher level.

The “model” of the accelerator resides in the “calculate lower
level parameter” and “calculate this level parameter” processes.
It is important that these modeling processes occur on each level
and are by design independent from each other. This allows im-
plementation of new parameters and extensions of the model in
a flexible way. In implementation the same program or process
might be used at different levels. For example, an optics cal-
culation process might be set up as a “persistent” service for
different parameter objects.

The accelerator knowledge data store provides the basic in-
formation for the model. It contains lattice information, magnet
data, etc. Although this data changes rarely, it is a part of the
data flow.

The recursive design suggests that parameters can be orga-
nized as a tree, where each object is anode with all internally
used objects as leaves. However, it turns out that there is no
natural structure for this tree. Whatever parameter is set by

the operator or sequencer is the top level. The tree structure
must therefore be dynamically configured foreach operator or
sequencer command.

The system described so far allows the generation of a con-
sistent set of redundant parameters. If the model used is correct,
the parameters give a complete description of the machine. Un-
fortunately, real life is often different, and the measurements of
parameters differ from their desired values. The parameter ob-
ject therefore contains measure and trim processes.

In addition to the parameter store the parameter object con-
tains a trim store. The goal of operations is to predict the best
trim, so that the machine behaves as described by the parameter.
The trim is predicted on the basis of past experience. A “Pre-
dict Trim” process calculates the trim for the future step-stone
from the measurement of the past or present and the parame-
ters and trims that lead to those measurements. The “combine”
process combines the parameter value and the trim value into
a “parameter to be installed” value. (In most cases the combi-
nation means just adding the two values, but more complicated
combinations are possible.) Instead of the desired (requested)
parameter, this “parameter to be installed” is passed to the “cal-
culate lower parameter” process. The returned values from the
dependent parameter objects need to be “un-combined” from the
trims before they are sent to the validate and sequence process
for interpretation.



III. IMPLEMENTATION

C++ will be used for the programs that control the front end
electronics, global beam-level applications and monitoring sys-
tems. Consequently, complex data structures can be developed
with all the useful inheritance features of the language. Con-
figuration data for all of these structures will be organized us-
ing both relational database management systems and UNIX
file systems[4]. The transport of these data structures from one
independent process to another will be managed by a program
context known asglish. Client processes interconnected in a
glishenvironment need no knowledge of other processes or their
data structures. Events, defined as a name-value pair, are di-
rected to various clients by theglish interpreter. When these
named events occur in some process, the interpreter recognizes
the event and passes the value data onto appropriate clients. This
environment enables significant modularization of code as well
as the distribution of processes over an extended network.

The architecture for the control system implied by the param-
eter object design would allow a hierarchy of software systems
communicating with each other without a “hard” line between
the front end and global beam-level control systems. For ex-
ample, in principle the orbit correction algorithm could address
hardware by passing the appropriate data structure via theglish
interpreter directly to the front end computers. However, this
functionality of glish will not be used during the commission-
ing test. A protocol/class library known as the Accelerator De-
vice Object Interface or ADOIF will mediate between the global
control systems and the front end modules. The front end elec-
tronics is controlled by VME based computers using the Vx-
Works[5] operating system. The conceptual design for the front
end systems has been described elsewhere[6]. Aglish client
built around ADOIF will receive aglishevent and forward it to
the appropriate front end. Information from the front ends will
pass back to the global systems analogously. Depending on the
need to cache the readback information from hardware for use
by various processes, device managers, alsoglishclients, will sit
between the ADOIFglishclient and the beam-level applications.
These manager processes would be responsible for absorbing
the data from front end computers and making it available to
genericglishclients.

All processes are designed to be independent of any graph-
ical user interface as a data source. Whether the local data of
a process is output to the screen or not, the process will be ad-
dressable via theglish event sequencer. Generic device input
follows the same principle. There will be button/menu driven
parameter pages available though a graphical interface, but the
same parameters will also be adjustable via the event interpreter.

IV. CONCLUSIONS

The commissioning software for the AGS to RHIC transfer
line will be a model for the RHIC control system. We will test
the ideas and principles outlined here in September 1995. After
the test a thorough review of both the systems and design will be
carried out. We are committed to “throwing away” code as well
as a re-conceptualization of the system design in order to avoid
future problems. The construction of the control system requires
the close collaboration of both the acceleratorphysics and con-

trols groups. The outlook of the physics group tends to focus
on the beam-level systems and that of the control group at the
level of the front end computers. Making the transition between
the two domains a smooth one is not a trivial task. We believe
that the experience gained from the upcoming test will provide
enough information to make whatever changes are needed for
RHIC commissioning.

References
[1] Vern Paxson, “TheGlish 2.4 User's Manual”, RHIC AP

note 30.
[2] T. DeMarco,Structured analysis and system specification,

Englewood Cliffs, New Jersey, Prentice Hall, 1979.
[3] T. D' Ottavio, et. al., “ATR Commissioning Software Task

Force Report”, RHIC AP note 53, 1994.
[4] C. G. Trahern, et. al. “Relational Databases for RHIC De-

sign and Control”, EPAC proceedings,1994.
[5] VxWorks, Wind River Systems, Inc., 1010 Atlantic Ave.,

Alameda, California 94501-1147.
[6] L. T. Hoff, J. F. Skelly, “Accelerator Devices at Persistent

Software Objects”, Nuclear Instruments and Methods in
Physics Research A, 352 (1994) 185-188.

y Current address: Flat 4, 89 Belvedere Road, London SE19
2HX England, email: salty@crapeau.demon.co.uk


