
The Continuous Electron Beam Accelerator Facility (CE-
BAF) uses the Experimental Physics and Industrial Control
System (EPICS) for accelerator control [1]. In EPICS, the
atomic element of a control algorithm is a record. Records are
grouped together to form generic applications, for example to
control a single magnet. The generic applications are then in-
stantiated for each specific item of machine hardware. Instan-
tiated applications are executed on one of the 30 data
acquisition and control computers that are used in the control
system. There are roughly 125,000 unique, instantiated
records at CEBAF, each associated with a specific piece of
hardware[2]. Management of these records in a database sim-
plifies the task of application developers by allowing them to
concentrate on algorithmic development instead of instantia-
tion details. In addition, it decouples algorithmic development
from the specification of operational parameters, allowing re-
sponsibility for those parameters to pass to machine opera-
tions staff. CEBAF needed an environment to provide support
for development of EPICS database management tools. An
object-oriented database (OODB) was chosen for two reasons:
higher performance and the ability to smoothly manage ob-
jects of different types.

I. INTRODUCTION

A requirements analysis of the control system was per-
formed, to determine CEBAF’s data management needs. The
analysis illuminated some limitations in the existing system
and pointed the way to a solution. This section briefly intro-
duces EPICS, and points out some of the problems that were
presented to CEBAF.

EPICS provides a solid footing on which to base an accel-
erator control system. In EPICS, single-board computers us-
ing the real-time operating system VxWorks execute control
algorithms coded as EPICS “databases”. Each database con-
sists of a number of records, which are executed according to
rules of association specified prior to downloading of the da-
tabase to its execution engine. The kinds of rules that are spec-
ified include execution order, prioritization of execution of the
records and data communication between records.

Despite the solid execution environment that EPICS pro-
vides, its application development tools give little assistance
in managing large projects like CEBAF. The developmental
tools do not provide for data management outside of the appli-
cation development framework, or for replication of EPICS
databases. It is incumbent on each site that uses EPICS to pro-
vide its own mechanism for reproducing control algorithms.
The typical solution at most EPICS sites is the use of UNIX-

*Supported by U.S. DOE Contract DE-AC05-84-ER40150

based text processing tools to do replication, and incorpora-
tion of instance-specific record definition data either during
replication or afterwards. These solutions are not typically
well integrated into the operational control system, and make
it difficult to manage large numbers of records.

When CEBAF first started using EPICS, application de-
velopers also chose to use text-processing tools. Developers
used a schematic editor tool to create generic control algo-
rithm templates for a particular piece of hardware, such as an
RF module. Specific instances, corresponding to pieces of real
hardware, were generated from the generic algorithms by
making four passes with different tools through successive
ASCII files. Complete processing of some of the larger gener-
ic files, associated with CEBAF’s RF system, took more than
five minutes on an unloaded HP-700 series machine. This pro-
cessing time adds significantly to the burden of developers
during the debugging and testing phases of application devel-
opment.

Another drawback to this style of producing EPICS data-
bases is the lack of management tools. For example, there is
no mechanism to prevent different records from having the
same name. Such name conflicts are typically found at record
execution time (if at all). Other limitations include the inabil-
ity to perform wild-card queries on the names of records, to
identify from a record name the front-end computer on which
it resides, or to quickly query the attributes of a particular
record.

II. OBJECT ORIENTED DATABASES

CEBAF had a clear need for a data management package
to organize the 125,000 operational EPICS records. A require-
ments analysis of the management problem illustrated the
need for support in two areas, machine operations and appli-
cation development. The requirements analysis supported the
choice of an object-oriented database (OODB) system for its
speed and flexibility.

Operational Support

The requirements analysis indicated that the data man-
agement package had to provide tools for operations staff to
manage accelerator operational data. In the past, developers
have been forced to maintain operational data in their algo-
rithms. This has principally been because of a lack of tools for
non-developers to manage the data. Using a commercial data-
base as a repository for EPICS record information enables the
development of those data management tools. This in turn al-
lows developers to release control of operational parameters
to the CEBAF operations staff. Once that is done, developers
can concern themselves principally with algorithmic function-

MANAGING CONTROL ALGORITHMS WITH AN OBJECT-
ORIENTED DATABASE *

M. Bickley, W. Watson, Continuous Electron Beam Accelerator Facility, Newport News, VA 23606 USA

ality without worrying about operational detail.
For example, common attributes of most EPICS records

are the upper and lower operational limits of the record’s val-
ue. Those limits are typically used for graphical displays, and
serve no algorithmic purpose. Once accelerator operations
staff assume responsibility for the display limits, changes to
the underlying algorithm should not result in the loss of the
limit data. If the application developers add new records to the
control algorithm, or delete old one, the display limit values
set by the operations staff must propagate correctly into the
new algorithm. For situations where propagation cannot be
automated, the developer should be provided with tools to
make the data propagation straightforward.

The current technique for managing operational data uses
a program which backs up and restores large numbers of field
values from data files. This program is capable of providing
some of the same functionality as a database. Using this tool,
however, just moves the data management problem from the
application developers to the maintainers of the backup/re-
store data files. Further, the tool only operates on the opera-
tional accelerator: it does not provide methods for modifying
EPICS records in a non-operational system. Finally, the back-
up/restore software does not provide tools to perform data-
base-style actions on the information stored in its data files,
such as queries, wildcarding and versioning.

Development Support

The data management package also had to provide tools
to assist application developers, and improve their efficiency.
While it would not be a part of run-time control algorithms, it
would be integral to the development cycle of EPICS databas-
es. A short turnaround time, from modification of a schematic
to execution of the new algorithm, facilitates development and
testing. It also shortens accelerator downtime in the event of
algorithmic bugs in operational code.

The management package had to enable replication of ge-
neric applications into specific applications. In the interest of
alleviating the management burden on developers, they
should be able to define a generic control algorithm and rules
to produce specific instances of it. Data management tools
must be able to follow the specified rules and then produce
new, specific applications from the generic algorithm. Then,
the addition of a device for which a control algorithm already
exists would require no additional work of any developers.
The replication also must be fast, to shorten the time from
completion of testing to operational readiness with the new
control algorithm. For example, at CEBAF a single RF control
application, controlling one zone of RF cavities, uses roughly
3300 records, and is instantiated 20 times. The database must
be able to perform the instantiation in a reasonable time, on the
order of minutes.

The management package to be used for EPICS record
management had to meet other data management needs for the
operation of the accelerator. At the time this development was
being planned there were no clear requirements for database
tools in other areas. It was clear, however, that a such a need
would develop eventully.

The management package had to support heterogeneous
data. Each of the more than 40 EPICS record types have dif-
ferent sets of attributes. The package of choice would have to
be able to support this variety, which traditional relational da-
tabases cannot. We decided, therefore, to use an object-orient-
ed database (OODB). We specifically chose to use Object
Design’s database, ObjectStore. It is tightly integrated into the
C++ language with function overloading, and is extremely
fast due to its use of virtual memory to support database refer-
ences.

III. DATABASE DESIGN

The database design was intended to take advantage of
the way that EPICS records are used, to save space and speed
up the access of data within the database. Each record has
from 50 to 200 attributes, known as fields. Within the record
execution environment, in the memory of a single-board com-
puter, records can require anywhere from 500 to more than
4000 bytes of storage. A database which has storage space for
all fields of all operational records at CEBAF would have to
be more than 100MB in size. This does not take into account
the need for support for a development environment, or the de-
sire to support versioning of operational software within the
database. A better data design was required.

The organization of EPICS records leads naturally to a
layout which minimizes the size of the management database.
In EPICS, each record type is defined to include a set of fields,
and the definition includes default values for each field. By in-
cluding the record and field definition in the database a base-
line can be established for all records. Every operational
record can then be compared against the default for that type,
and only non-defaulted field values stored in the database.
Typically, only 5 to 10 fields have values other than the de-
fault, yielding a tenfold space savings. For example, there is a
gradient setpoint record for each RF cavity. That record, of
type “ao,” has 100 defined fields. When used as a gradient set-
point record, however, only 7 field values are non-defaulted.
These include high and low operational limits, maximum and
minimum settable value, engineering units of the record, pre-
cision of the record, output hardware address and an inter-
record connection.

The same rationale can be extended to provide even more
space savings. During instantiation of the generic application,
not all of the fields will have values that are different for that
specific instance. In fact, typically very few of the fields have
values other than the generic value. Therefore, by including
for each instantiated application only those field values which
are both non-defaulted and different from the generic, there is
a further space savings. For example, the generic RF gradient
record described before, with 8 non-default values in the ge-
neric form, has only two values which are different for specif-
ic instances of the record: the inter-record connection and the
hardware address associated with this record.

In general, the space savings factor is between 2 and 3
times. The reduced size of the instantiated applications yields

benefits in other ways besides the space savings. Replication
of the generic applications is faster, since fewer fields must be
created. Further, because each instantiated application is
smaller, it can be stored more easily in the memory of work-
stations accessing the database. This greatly speeds up inter-
action with the database when queries are being generated.

Figure 1 shows a graphical representation of the organi-
zation of the EPICS database within the OODB. In the de-
scription below, italicized words refer to objects in the figure.
The OODB representation, which includes all record informa-
tion needed to manage all the EPICS records at CEBAF, is
stored in anEpics DB, which is a collection of five different
objects:strings, meta data, defaults, applications and arecord
catalog.

Strings: Some EPICS fields can only take on values which
match one in a series of strings. Thestrings object, a col-
lection ofstring lists, serves to support those fields. Each
string list is in turn a collection of strings, where each
string in the list is one of the possible values for a specif-
ic field. For example, every EPICS record has a field
named “SCAN”, which indicates the period with which
the record should be executed. Some possible SCAN
field values are “1 second”, “.1 second” and “10 sec-
ond”. When a non-default value for a SCAN field is
specified, the value stored with the field is not the string
itself, but a pointer to the appropriate element of the
SCAN string list. This format saves space, since only
four bytes of storage are required for the pointer, rather
than the 12 bytes that would be required for each use of
the SCAN field. Thestring lists are also a convenient
mechanism to verify the value of a field. If a user tries to
specify a value for a field which uses astring list, and the
value is not on the appropriate list, the user can be
warned.

Meta data: The meta data object is a collection ofmeta
records, with eachmeta record a collection ofmeta
fields. Descriptive information about every field of ev-
ery EPICS record is stored within themeta data object.
This information includes, for example, the data type of
the field value and a prompt string when querying a user
for a value for this field. Gathering all of themeta data
here makes it possible to keep other database objects as

Record

Field

Field

Name Rules Specific App

Record

Epics DB

Defaults

Record

Field

Meta Data

Meta Record

Meta Field

Strings

String List

Applications

Generic App

* Denotes a collection of those items

*

**

*

**

**

**

*

*Hardware *

Record
Catalog

 Rules

Fig 1. Schematic representation of the database structure

small as possible. Everyfield in theEpics DB includes a
pointer to its associatedmeta field. If meta information
for a field is needed by a database tool, a pointer deref-
erence provides access to it.

Defaults: Thedefaults object is a collection ofrecords, with
eachrecord a collection offields. Each field holds a
pointer to its meta data description, and a field value.
This value is the default value for the field. When a spe-
cific instance of afielddoes not specify a field value, this
is the value that is used by EPICS.

Applications: Theapplications object is a collection ofge-
neric application objects. Eachgeneric application is
made up a a collection ofnaming rules, a collection of
hardware rules, a collection of genericrecords and a
collection ofspecific applications, which are instantia-
tions of thegeneric application.

Thenaming rules are a series of strings that specify
substitutions to be performed on each genericrecord and
genericfield value as they are instantiated into specific
records andfields. Thehardware rules are a collection
of record name/hardware address pairs which are used to
associate each instantiatedrecord with a particular crate,
slot and channel.Hardware rules are only needed for
those records which perform hardware input or output.
Therecord object associated with ageneric application
is a collection of the generic EPICS records that make up
the control algorithm for that piece of hardware. Each
record is a collection of thosefields which have taken on
a non-defaulted value.

Finally, thespecific applications are each made up
of a collection ofrecords, onerecord for everyrecord in
the parentgeneric application. The names of each
record in thespecific application have been converted
according to thename rules associated with thegeneric
application. Eachrecord is a (usually small) collection
of fields. Thefields in eachrecord are those which have
a value different than the default value, and also differ-
ent than the value in the genericrecord from which it
was instantiated. Somefield values refer to other
records, so those values are processed according to the
name rules for thegeneric application.

Record catalog: Therecord catalog object is a collection of
names of allrecords in the database, and pointers to the
records. This provides a means for performing wild-card
searches on allrecords in theEpics DB without having
to navigate through eachgeneric application andspecif-
ic application.

IV. REFERENCES

[1] W. McDowell et. al. “Status and Design of the Advanced
Photon Source Control System”,Proceedings of the 1993
Particle Accelerator Conference

[2] S. Schaffner et. al. “Device Control at CEBAF”, these pro-
ceedings

[3] W. Watson et. al, “The CEBAF Accelerator Control Sys-
tem: Migrating from a TACL to an EPICS Based Sys-
tem”, these proceedings

