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In this paper we present a new model to represent
analytically the transverse beam dynamics in RF photo-
injectors. It consists basically of an enhanced Kim's model [1],
with incorporation of RF ponderomotive focusing effects,
external magnetic focusing and a perturbative treatment of
space charge along the beam envelope. Applying the resulting
formulas it is possible to predict with high accuracy the
transverse beam envelope behaviour in a multi-cell RF gun, as
well as the operating conditions to achieve space charge
emittance compensation according to Carlsten's scheme [2].
The agreement with sophisticated numerical simulations is
really quite satisfactory, as well as the match with
experimental measurements of the predicted operating range for
emittance compensation.

I. BEAM ENVELOPE IN MULTI-CELL RF GUNS

The basic model adopted for calculating the beam envelope
consists actually of an indefinitely long RF gun, supporting a
T M 010-π standing resonant mode (frequency ν ) with
accelerating field Ez = E0cos(kz)sin(ωt+ϕ0) (E0 is the peak
field at the cathode, located at z=0, k=ω/c, ω=2πν). The field
is expanded linearly off-axis to find the transverse Er and Bϕ
components [1]. An external solenoid is assumed to be folded
around the first 2+1/2 cells of the RF gun cavity, producing a
constant magnetic field Bz = B0 from z=0 up to zC=(5/4)λ .

Under the approximation α > 1/2 , where α = eE0/(2mc2k)
is the dimensionless field intensity, it has been extensively
shown elsewhere [3] that the beam envelope conditions σ2 and
σ2' at the second iris location z2=(3/4)λ can be written, for a
gaussian charge density distribution in the bunch, as
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where σcat is the laser spot size at the cathode, ∆pRF is the
RF defocusing kick
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∆B is the magnetic focusing term ∆B = (1/2)[ksLog(γ2/γB)]2

(ks=cB0/E0) and ∆SC is the space charge defocusing kick
∆SC = (1+µSC)[1-Log(γ2)/(γ2-1)], calculated a la Kim . The
space charge dependence on bunch and field parameters is
specified by µSC = Z0 I ζ / (8γ'E0 Ia σ2cat) , where Z0=377
ohm, I is the bunch peak current,  Ia=Alfven current, γ' = αk
is the dimensionless energy gain per unit length and ζ
specifies the dependence on the bunch aspect ratio A = σr / σz ,

ζ  = 1 / (2.45+1.82A1.25-0.55A1.5) . The beam energies γ1
and γ2 (in rest mass units) at the first and second iris are given
by γ1 = 1 + απ/2 and  γ2 = 1 + 3απ/2  ( γB = 1 + απ/4 ) .

After the second iris the beam envelope can be easily
tracked, as far as the space charge can be assumed negligible
beyond this point, by applying the RF focusing transport
matrix for relativistic beams [4] with initial conditions σ2 and
σ '  orb given by eqs.1 (σ'2 gives the secular orbit divergence and
will be used later as initial condition for the envelope
equation). The matrix gives at any position the beam spot σ of
the average secular  orbit and the beam divergence σ' of the
actual orbit.

The agreement between analytically predicted envelopes and
numerical simulation results are shown in Fig.1 for two
10+1/2 cell guns at typical frequencies and peak fields.
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Figure 1: Beam envelopes through two different 10+1/2 cell
RF guns (ν=2.856 GHz upper diagram, ν=1.3 GHz lower
diagram). Dashed lines give the secular orbits analytically
predicted, while solid lines are numerical simulation results.

In the upper diagram the bunch aspect ratio is A=1.25 with
σcat=1.5 mm, corresponding to a peak current I=100 A at 1
nC and 400 A at 4 nC (z2=79 mm , γ2=8.7 , α=1.64); in the
lower diagram A=0.83 with σcaike problemsz2=174 mm ,
γ2=8.6 , α=1.62). The simulations were performed with the
codes ATRAP [5] for the S-band gun and ITACA [6] for the L-



band one. In this way the beam envelope can be predicted just
on the basis of six main free parameters: three of them
characterize the external fields, namely E0, ν, B0, while the
bunch characteristics, determining the collective field, are
specified by σcat, A, and I.

Eqs.1 are derived under the basic assumption of self-similar
expansion of the charge density distribution, which stays
gaussian in the (r,z) space under the effect of all the external as
well as the collective forces acting on the bunch particle. The
average bunch phase <ϕ > is assumed to be <ϕ >=π/2 ,
corresponding to maximum acceleration in the gun.

In case the magnetic focusing is not applied (B0=0, as for
Fig.1), the beam envelope behaviour is such that the space
charge effects can be considered negligible after the second iris.
In presence of an external magnetic focusing we need a
different treatment of the beam dynamics. The envelope
equation for a relativistic beam [7] seems the best approach:
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where  σ'= dσ/dz , εn is the rms normalized emittance and
Kr is the RF focusing gradient [4] Kr = (ks2+1/8)(γ'/γ)2 ,
which incorporates the contribution (ks) from the magnetic
field. This equation actually holds for an un-bunched beam:
since the bunch aspect ratio in its rest frame, given by A/γ,
can be considered small enough beyond the second iris, where
typically γ>5,  we assume eq.2 can be taken as a good
approximation. Moreover, since we are interested in studying
the conditions which give rise to space charge emittance
compensation, the hypothesis of beam laminarity will be set
up, implying that the emittance term in eq.2 is negligible.
This is equivalent to assume that the beam envelope will not
go through any crossover from the cathode up to the gun exit.

Under these assumptions, we can apply a Cauchy
transformation to eq.2, setting y = Log(γ/γ2) (recalling that
γ= 1 + αk•z = 1 + γ'z ) and obtaining

  

d 2σ
dy2
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with σ  = σ (y) and S = 2I / (Ia γ'2 γ2) . We solve eq.3
following two different techniques, according to two different
domains: the first one is defined by  z2 < z < zc  (0<y<yc) and
it is characterized by the focusing from the magnetic field, so
that Ω 2 = 1/8 + ks2. The 2nd one is defined by z>zc
(yc=Log((1+5πα/2)/γ2), zc=5λ /4), hence Ω2 = 1/8. In the
first domain the beam size σ is varying slightly with respect
to σ2, allowing to assume σ=σ2 in the non linear term on the
r.h.s. of eq.2. The general solution σI of the linearized
equation becomes
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where σ•  = dσ/dy  and  σ• 2 = σ'2  γ2 / γ' .

Setting σc=σI (y=yc) and σ• c=σ• I (y=yc), we can solve
perturbatively eq.3 in the second domain, assuming that the
non linear term on the r.h.s. may be represented by a particular
solution of the form 4). The perturbative solution σII becomes
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where Ψ   = 1/8 + (1+σ• c/σc)2. Eq.5 produces envelopes as
those shown in Fig.2, for the same bunch and field parameters
of Fig.1 (lower diagram, L-band gun), at various values for
B0. One should note that an angular kick  ∆σ' = +γ'/2γ  [4]
must be added to the secular envelope at the gun exit in order
to transform it back into the actual envelope.
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Figure 2: Beam envelopes through a 10+1/2 cell L-band RF
gun (E0=45 MV/m, I=200 A, Q=4 nC).

II. UNIVERSAL SCALING

Due to the excellent agreement between the analytical
treatment and the numerical data, we believe that is possible to
extract from the envelope expressions, eqs.4,5 and 1, useful
informations on beam quality and RF gun performances. First
of all, let us normalize the envelope eq. 3, which, in Cauchy

space (σ,y), reads, for y>yc , σ•• + σ/8 = Se-y/σ , in order to
reduce all the parameters to dimensionless quantities.

By defining the dimensionless quantity τ ≡ σ / √ S , the
envelope eq. in the Cauchy dimensionless space (τ,y) reads

  

d 2τ
dy2

+ τ
8
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τ
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which is a universal scaled equation, independent on any
external parameter. It is interesting to note that the function τ
can be expressed as τ  = γ'•λp√γ2/γ : under this form it is
clearly  shown that τ scales like the ratio between the plasma
wavelength λp=2πc/ωp and the energy gain length Lg = 1/γ'.
Moreover, a particular exact solution of equation 6) can be

found to be τ* = √8/3 e-y/2 : this solution is characterized by



a constant ratio between the two fundamental scale lengths, Lg

and λp, i.e. λp/Lg = √8/3  . The corresponding beam size σ*

comes out to scale like 1/√ γ , namely σ* = √8Sγ2/(3γ) ,
but, more relevant, τ* is the only solution displaying a
constant phase space angle δ, which is independent on initial

conditions σc and σ• c in all of the three spaces (Cauchy

dimensionless, Cauchy, real) . In fact, δ* = τ•* / τ  =  σ• * / σ  =
γσ'* / (σγ')  = -1/2 , so that in both Cauchy spaces the phase
space angle is a universal constant. The most relevant
consequence is that δ, on this particular envelope σ*, which
will be called the invariant envelope, does not depend on the
beam current (whose dependence is embedded in the

expressions for σc and σ• c): this is exactly the basic condition
to get a vanishing linear correlated emittance. In fact, it is well
known that the emittance growth from linear space charge
effects is due basically to the spread in phase space distribution
of different bunch slices, which get different kicks from the
space charge field: these may be thought to be represented by
different current amplitudes in the envelope eq.2 .
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Figure 3: Solutions of eq.7 at ν=1.3 GHz, A=1, I=150 (upper
diagram) and I=300 A (lower diagram), represented by the
solid-dotted lines in 3-D sub-space (E0, B0, σcat). Since the
bunch aspect ratio is kept constant, the displayed bunch

charges are given by Q=√ 2π I•σcat / A.

III. RF GUN OPERATING CONDITIONS FOR
EMITTANCE COMPENSATION

In order to find the operating points, as functions of the six
free parameters, we must solve the equation:

[σc − √8Sγ2/(3γc) ]2 +[σ• c + (1/2)√8Sγ2/(3γc) ]2 = 0    7)

whose solutions, in the 6-D space (ν , I, A, E0, B0, σcat),

assure that σc and σ• c  match the initial conditions of the
invariant envelope. In this way the beam is transported from
the cathode up to the gun exit with no space charge
correlation, hence the emittance compensation is achieved.

In order to simplify the search for the solutions, we fix
three parameters, namely ν, I and the aspect ratio A. The roots
found in the 3-D sub-space (E0, B0, σcat) are plotted in Fig.3
for a L-band gun at I=150 A and I=300 A. The projections on
the plane (B0, σcat) are also plotted in the figure (solid lines),
while the shaded surfaces set the limit of maximum charge
extractable from the cathode (only points on the right of the
surface are allowed).

Selecting one possible solution from Fig.3, namely ν=1.3
GHz, A=1, I=150 A, E0=35 MV/m, B0=1.02 kG and
σcat=0.84 mm (so that Q=1 nC), we plot the corresponding
envelope in Fig.4, for the nominal 150 A current and for lower
and higher currents, 110,130,170,190 A, respectively: it is
worthwhile to note that envelopes corresponding to currents
different from the nominal one spread out in the first cells (see
enclosed box), where the focusing action of the solenoid is
dominant, but converge down into a common invariant
envelope along the second domain ( zc>330 mm) of eq.6.
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Figure 4: Envelopes corresponding to one of the solutions
shown in Fig.3, for various currents around the nominal one.
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