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Abstract

The analytic linear and nonliner zero-length fringe maps are cal-
culated explicitly for a normal quadrupole up to 6-th order gen-
erators. A very simple leading term is found for the linear fringe
map. The 4-th order leading term is the L. Whiting’s hard edge
result as expected. No significant leading term at the 6-th order
are found. Our results should be useful to estimate the signifi-
cancy of the soft fringe of a quadrupole to beam dynamics. The
method used in this calculation can be used to compute the soft
fringe maps of various magnets.

I. INTRODUCTION
Fringe fields exist for all kinds of magnets. They are an impor-

tant source of nonlinearity in beam dynamics. Although maps
including fringe fields can be calculated numerically using pro-
gram like MARYLIE [3], [6], they are often neglected due to
either their weak effects or the difficulties to handle them. It
should be useful to have handy analytic fringe maps to estimate
the significancy of the fringe fields at various orders. An analytic
map will be physically more meaningful also. There are some
analytic results for hard-edge fringe maps[4], [10] but none for
soft-fringe maps. In this paper, we calculate the linear and non-
linear symplectic maps of a normal quadrupole fringe field. For
simplicity, we consider only the geometric nonlinearity. The au-
thors would like to thank A. Dragt for calculating fringe maps
numerically using his MARYLIE.

II. POSITION DEPENDENT HAMILTONIAN
For an on-momentum particle in a normal quadrupole, the

Hamiltonian reads
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wherePx,Py are the normalized momenta with respect toP0, and
δ = 1P/P0; EA is the vector potential of the magnetic field. In
the last step we dropped the kinematic nonlinear terms also. In
fact, even the kinematic nonlinearity is significant for the whole
quadrupole, it may not be important (at least at the 4-th order)
in the fringe map we are considering because of the shortness of
the fringe region.

For a magnetic field with cylindrical symmetry, its vector po-
tential can be obtained from the on-axis field [5], [9]. In a con-
veniently chosen gauge, the non-zero components of a normal
multipole are
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where
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For a normal quadrupole with an on-axis gradientG(s), m= 2
andC2 = 1

2G(s). From the expansion of the vector potential,
we can expand the Hamiltonian keeping up to 6-th order terms.
This yields the approximate position dependent Hamiltonian to
be used in our map calculation
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where k(s) = e
P0

G(s) is the position dependent quadrupole
strength.

If the quadrupole is long compared to its fringe field region, its
strength approaches a constantk0 ≡ k(0) inside the quadrupole.
We will treat the fringe field part as perturbation, i.e.

H(s) = H0(s)+ H̃(s) −→ H0(s) outside fringe (4)

The perturbation term is chosen in two ways. In the nonlinear
fringe map section, we use

H0(s) = 1
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H̃(s) = H(s)− H0(s) = nonlinear terms in Eq.(3)

In the linear fringe map section, we chooseH0(s) a piece-wise
constant Hamiltonian of an ideal quadrupole
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andH̃(s) = 1
2 k̃(s)(x2− y2), where
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s0 = 1
k0
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0 k(s)ds, the effective ”magnetic length”. Our results

will be expressed in terms of the moments ofk̃(s)
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We assumed that̃k(s) is anti-symmetric about the edges0. It is
nature to characterize the fringe width via the rms widthσ of the
bell-shaped functionk′(s) as
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∫∞

0 k′(s)(s− s0)
2ds∫∞

0 k′(s)ds
= 2I1

k0
(10)

3σ is a good measure of the half width of fringe region.

III. NON-LINEAR FRINGE MAP
Consider the map from the center of the quadrupoles1 = 0 to

a points2 that is far outside the fringe field region. Our goal is
to find a simplectic fringe mapQ f which represents the fringe
field effects so that the mapM(s1→ s2) can be written as

M(s1→ s2) =MQ(s1→ s0) Q f Mdri f t (s0→ s2) (11)

whereMQ is the map of an ideal quadrupole of strengthk0 and
lengths0 = Lef f ;Mdri f t is the drift map froms0 to s2. (They
may contain kinematic nonlinearity even though we neglect it in
our calculation ofQ f . This approximation may not be good at
the 6-th order)

Before working on Eq.(11), we concentrate on the non-linear
part, i.e. considering

M(s1→ s2) = R−(s1→ s0) Q̃ f R+(s0→ s2) (12)

whereR± are exact linear maps. To calculate this, we choose the
perturbationH̃(s) as in Eq.(5), slice the time dependent Hamil-
tonians into pieces and move all the linear map before and after
s0 to the left and right side respectively using similarity trans-
formation. This process is exact. Then we concatenate all the
nonlinear pieces into a perturbation mapQ̃ f via 2nd order BCH
formula. Since we are concerned with up to 6-th order genera-
tors, 3rd and higher order BCH terms do not contribute in this
case. Therefore

Q̃ f = e:− ∫ s2
s1

dsH̄(s)+ 1
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s ds̃[ H̄(s),H̄(s̃)]: (13)

whereH̄(s) = H̃(s, R(s0→ s)X); X represents the phase space
variables andR(a→ b) is the exact linear matrix froma to b.

To carry out the integrations in Eq.(13), usually we need to
know the exact linear matrixR(s0 → s). However, since the
fringe region is expected to be very short, we can Taylor expand
R(s0 → s)X abouts0 and truncate at a suitable order of1s =
s− s0. The coefficients of the series involve the derivatives of
k(s) and the dynamical variables at locations0, which can be
obtained via the Hamiltonian equations. This is a unique point in
our approach. It is also possible to get exact results via integrals
involving sine-like and cosine-like orbits as was done in [10], [7].

There is a subtlety about the convergence of this approach.
Although in principle it should converge because the linear orbit

is a well behaved function, convergence could be slow due to
cancellations among various orders. Fig.1 shows the deviation of
the various order expansions in1s from the exact linear orbit in
the fringe region. We see that though the approximations inside
the fringe region are getting better, they become worse outside.
Fortunately, the fringe region is short. Therefore, the expansion
needs to be good only within a certain window covering the
fringe, and the integrations in Eq.(13) is over that window. This
will suppress the high order moments and help convergence. The
low order moments will not change much when the window is
sufficiently large to maintain the orginal boundary conditions.

The 4-th order generators of̃Q f result from the integration of
Hamiltonian only. Expansion up to1s5 is used.
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The first term is the well-known hard-edge result; in which case
I1 = I3 = 0. The other terms are due to the soft edge; the
correction is usually quite weak. However, the effect of the
pseudo-octupole term on tune shift has been observed[8]. The
coefficient of this term can also be given by a slightly more
accurate form(k0I0+K0)/12. A quick estimate of the coefficient
I1 can be done via Eq.(10).

The 6-th order generators ofQ̃ f result from integrations of the
6-th order terms inH̃ (up to1s3) and the Poisson bracket(up to
1s2) of the 4-th order terms iñH

F6' − K

288
(x2+ y2)(x4+ 14x2y2+ y4)

+k0k′(s0)

384
(x2+ y2)(x4+ 10x2y2+ y4)

−5K1k(s0)

96
(x2− y2)(3x4+ 2x2y2+ 3y4)

−K0− 2k0I0

8
(x2− y2)3

+k0k(s0)

48
(2Pxx5+ 3Pyx4y+ 11Pxx3y2+ 11Pyx2y3

+3Pxxy4+ 2Pyy5)

+5K1

96
(15P2

x x4− P2
y x4− 8Px Pyx3y− 6P2

x x2y2

Figure. 1. Deviations of expansions from exact linear orbit
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At 6-th order, there are no dominant term like the hard-edge term
at 4-th order. The nonlinear fringe map in Eq.(12) is

Q̃ f = e:F : with F = F4+ F6 (16)

IV. LINEAR FRINGE MAP
To obtain the fringe mapQ f in Eq.(11), we still need to work

out the linear maps in Eq.(12). Now the Hamiltonians are given
by Eq.(6). We use the same approach to treat the linear pertur-
bation term and factor out a linear perturbation map at the edge
s0. Since we are dealing with 2-nd order terms, all terms in the
BCH series are the same order. Therefore it may be necessary to
sum an infinite series. However, the second order BCH formula
yields very good approximation due to the weakness of fringe
perturbation.

The two linear maps in Eq.(12) are found to be
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It is easy to concatenate the two linear fringe maps via 2-nd order
BCH formula and get the total linear fringe map

R f = e: f −2 :e: f +2 : = e: f2: (20)

f2 has a significant leading term generating the matrix
diag{eI1, e−I1, e−I1, eI1}, which yields a scale change of the
phase space. The order of this effect is given by the dimension-
less parameterI1.

To finish our calculation of the fringe mapQ f , we combine
Eqs.(11, 12, 16, 17) and obtain

Q f = e: f −2 : Q̃ f e: f +2 : = R f exp{: e:− f +2 : F :} (21)

V. PEP-II Q1 MAGNET SOFT FRINGE FIELD
EFFECTS

As an example, we will show the fringe field effects of the
PEP-II Q1 magnet. It is a permanent magnet with the on-axis
gradientG(s) given by [1]
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2 . s = 0 is at the center

of the quadrupole. L is half of its physical length. r1,2

are the inner and outer radius.Br is the remanent field
of the permanent magnetic material. The parameters used
are [2] r1 = 8.7 cm, r2 = 16.6 cm, L = 60.0 cm,
Br = 1.05 T, G(0) = 10.64 T/m. Also positron momentum
P0 = 3.1 GeV/C of the low energy ring is used. These yield the
quantities defined in Eqs.(8,9) as

k0 = 1.029m−2, Lef f = 0.60m, I0 = 2.28× 10−2m−1,

I1 = 1.85× 10−3, I2 = 7.56× 10−5m, I3 = 1.95× 10−5m2,

K = 5.65m−5, K0 = 0.0127m−3, K1 = 0.00678m−3,

K2 = 1.05× 10−5m−1

We calculated our fringe map generator coefficients and checked
them againist MARYLIE, which shows agreement at 4-th or-
der and terms of 6-th order with momentum power less than
2(e.g. x Px y4, x6). The disagreement may be due to the
kinematic terms. The four coefficients inF4 is 0.086, 4.4 ×
10−4, −1.5 × 10−4, 8.6 × 10−4. For beam dynamics, more
useful figures are the coefficients in the normalized coordinates
(x = √β x̂, Px = (P̂x − αx̂)/

√
β ). At Q1, β ' 100 and

α ' 40. The coefficients read 340, 4.4, 0.6, 0.3× 10−3. The
largest normalized coefficient inF6 is the order of 2× 104.
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