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Static and dynamic inductances are ones of the main technical
parameters of magnet systems at the designing stage. Pondero-
motive force distribution is required for mechanical stress calcu-
lations.

The static inductance is used for evaluations of the stored en-
ergy, magnetic flux linkage in coils at instantaneous currents.
The dynamic inductance allows to define the interrelation be-
tween the instantaneous flux linkage and currents determining a
transient process in coils.

In the given paper a technique for determination of the dy-
namic inductance for magnet systems on the assumption of no
eddy currents in ferromagnetic elements of a construction is pro-
posed. This technique necessitates the evaluation of magnetic
energy at two rather close values of current in a coil on the mag-
netization curve, i.e. static parameters of a magnet system are
applied for the determination of the dynamic inductance. As,
at present, magnet systems are more frequently designed on the
basis of a magnetic field distribution analysis, obtained as a re-
sult of numerical simulation, the calculation of magnet energy
involves no difficulties.

Algorithmic aspects of numerical simulation of specific and
surface ponderomotiveforce loads for practical needs for design-
ing electrophysical devices are given.

I. DETERMINATION OF THE DYNAMIC
INDUCTANCE

The total magnetic energy W can be determined as follows [1],
[2]
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where ~B, ~H - are the magnetic induction and strength vectors;

~A - is the vector potential ( ~B = rot ~A );
~�, Ik, 	k - are the density vector, total current and flux linkage

of the K-th coil;
S
(j)
k - is the transverse cross-section of the K-th coil;
lk- is the loop of an elementary current filament withSk cross-

section.
In the general case the dynamic inductance of a current coil is

known [4] to determine the velocity of the magnetic flux linkage
with this coil
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where Lstik - is the static inductance.
Without limitation of the commonness let us consider the case

of one coil (N = 1). Then
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The final expression for Ldin is the following:
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� Lst; (1)
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The determination of Ldin according to (1) necessitates the
two-fold computation of the problem for a magnet system to de-
fine the energy increment �W . However, due to a small cur-
rent increment � I in a coil the results of the previous numerical
simulations are rather well initial approximation for subsequent
computations. The efficiency of a similar procedure is substan-
tially increased, if determination ofLdin = Ldin(I) dependency
is needed.

In the case, when W1 = W (I1) and W2 = W (I1 +� I) are
known, Ldin can be defined using the central difference of the
form

Ldin(I1 + 0:5�I) = 4
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where

k = 1 +
� I

I1

For the case ofN coils, matrix of the dynamic inductances is cal-
culated in the similar way to (2).



II. PONDEROMOTIVE FORCE SIMULATION
The problem of ponderomotive force determination has been

discussed in [1], [6], [3], [7].
In using the finite element method for spatial magnetic field

simulation it is assumed that magnetic permeability � to be con-
stant in each finite element. Such an approach permits a required
accuracy of calculations of magnetic induction components and
magnetic intensity ones, as well as field, energy, inductance and
so on. In this case it is naturally to use a linear dependence be-
tween magnetic inductance B and magnetic intensity H for cal-
culations of the ponderomotive force. Thus, detailed distribu-
tion of ”the equivalent density ”of ponderomotive force in ferro-
magnetic [1] can be constructed by using the ”Maxwell Stress”,
B2 = 2�0. In the given model all of the finite element sides are
”strong break surfaces” [6] in electromagnetic field. For real ge-
ometry of magnet systems such surfaces are interfaces, on witch
the surface density of ponderomotiveforce has physical sense [6]

Defining the outward normal from media ”1” to media ”2” one
can obtained the expression for the ponderomotive force density,
acting upon the interface
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Thus, an algorithm of ponderomotive force calculations per-
mits to find the specific ponderomotive force density, as well as
the surface one, acting upon the interfaces of electromagnetic
value break. Also it is possible to find the resultant force applied
to the whole body, as well as to the part of the body taking into ac-
count small construction gaps . Such an approach has been used
and appropriate software FERROPON (Finite Element, FERRo-
magnet continua, PONderomotive force distribution) has been
developed. Though this software is a part of the KOMPOT pro-
gram package [5], it can be easily used separately for pondero-
motive force calculations for available distribution of magnetic
field.
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