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Abstract and for the temporal phase space deviation variables:
Current modeling of transfer maps for superconducting RF cav- pt — pi(2)
ities at CEBAF includes only linear effects [1], [2]. Here we t=Cct-tu@), b= PoC : ()

extend the transfer mapping modeling capability to include ar- ] o ) . . .
bitrary order field information generated from the MAFIA fieldJSing this the Hamiltonian with arbitrary vector potential entries

; . : @
data.” We include coupler kicks, normal and skew quadrupdlComes, using; = pi/q and f = ﬂéoif

focussing and higher order effects. y t oy P,A
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l. Introduction
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Use of a Hamiltonian and associated conjugate variablesisa — f/l- 8 + T2 ((T - g) + T g) )
P P

prerequisite in the correct treatment of higher order effects and

ensuring that the resulting transfer maps are symplectic. Mugfbitrarily complicated magnetic fields can be handled by insert-

effort has been spent on creating realistic transfer maps for difg the appropriate vector potentials. From Hamilton’s equation

ferent magnets in the fixed energy case [3], [5], [6]. Here wee have, assuming«(0, z,t) = A,(0, z,t) =0

present an extension of this work to the case where the design

energy changes due to RF cavities. pr|design: — |design= 0 = ay — _99A0.21 i
Thefirst part of this paper gives an introduction to the deviation dt 9z mc 9t

variables and Hamiltonian used in the construction of transi@hich gives the equation for the energy increase.

maps in the energy dependent case. The second part of the

paper introduces the fields and the transfer map calculations for [ll. Simple RF Fields

RF cavities. Finally we show how to derive transfer maps for yare \we consider standing-wave fields in a cavity with axial

elements that change the design energy, and give some examgleisetry j.e. we only get the angle independent TM modes.
for the CEBAF cavities. following [7] an appropriate expansion fé, is

(7)

[I. Hamiltonian in Deviation Variables N Tz .
E,(r,zt) = Z anlo(knr) cos((Zn - no)ﬁ) sin(wt + ¢o) ,

Using standard techniques [4], [5] we derive the Hamiltonian n—1
in cartesian coordinates, y, t) with z as the independent vari- (8)
able as with
o\ 2 TN\2 w\ 2
2 K=pg2—(=) =(@n—np=—) — (=) . (9
K:_qAZ_\/?:_z‘mzcz—((px—qAx)2+(py—qu)2). oo <C) ( °2d> (C)
(1) The conditionny = 1 corresponds to the condition that
We introduce deviation variables wrt. the design orbit and the(r, d,t) = 0. An equivalent expression for the time inde-
(z-dependent) design energy: pendent vector potentid(r, z, t) = A(r, 2) coSwt + ¢o) is:
1 q nz
Pt = —/mct + P29 = —y (M, 2 A(r,2) = = “anlo(ker) COS2N —No) 55, (10)
n=1

wherep;(2) = B(2)y (z7mcis the design momentum, and wrt.gnd
the time of flight of the design orbit:

1 & an . nZ
1 A,z = — — (2n—ng) I1(kyr) sin(2n—ng) — . (11)
t(2) = / ﬁ(z)cdz. (3) 4df n; Kn 2d
The energy gain of the reference particle is given by the differ-

The scaling variables are wrt. a fixed momentpgy usually ential equation
chosen to be the final momentum. This leads to the transverse

T : . ay q .
deviation variables: 1
57 = ma Eo(2) sin(wt1(2) + ¢o) , (12)
X, Py= % , Y, Py = % , (4) whereEq(2) is the on axis gradient given by
o

N
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In practice RF cavities are phased to achieve maximum energy V. Transfer Maps for RF Cavities

gain for agiven field amplitude. In our approach aworking point |, s section we describe how to obtain the arbitrary order

is found by using a two-dimensional Newton method where W, ster map for RF cavities in the deviation variables
vary the field amplitude and the phase to find a given energy

increase which is to first order independent of the phase. X, P, Y, Py, T, P . (19)

. . Given the requested energy increase and phase set point, the
IV.'RF Multipole Fields transfer map will be derived as a Taylor series and transformed
Following standard techniques [8] here we consider the génto Lie algebraic form for use in lattice design and tracking
eral RF field expansion inside a cylinder. TM and TE mode mutodes.
tipole fields starting with dipole terms are handled. The termsWe start by expanding all fields in cartesian coordinates
m = O correspond to the fields in the previous section, the term

2 2
m = 1 correspond to a dipole field, the terms= 2 correspond F=vxa+ys, (20)
to quadrupole fields, etc. Since cavities are no longer assumegltiad
be mir_ror symmeFric We_have to use both Qﬁ_}&) and sinB,2) ot —> ﬁ T+ oti(2) . (21)
terms in the Fourier series expansion. In this case we need a to- o A _ _
tal of 8 independent terms per mode (n) to describe the fields The vector potential in cartesian coordinates is
adequately. A XA — YA 22)
X — = /"
A. TM and TE modes VX2 y?
An appropriate expansion f&, becomes and A YA + XA
y = —F— (23)

Ez(r, 0, 2)nm = Im(Kal )Ez(6, Z)nm (14)
where

Ez(0,2nm = c09Bn2) (Al sin(mg) + BN cos(md))
+  Sin(Ba2) (Co sin(mo) + DM cos(md))
The TE modes are derived from
1
BZ(rs 97 Z)nm = E |m(knr) Bz(e, Z)nm (15)

where

B.(0,2hm = CONBn2) (AL sin(mo) + BlE cos(md))
+  sin(Bn2) (Clg sin(md) + D]5 cos(mg))

We omit the full expansions for the fieldg] M(r, 6, z)nm,

X2+ y2
For generam the expansion of the Bessel functions is
1\™ 1 k?r2
Imkny=r"({Z) kK| =+ ———+--. 24
m(kr) =r <2> [m!+4(1+m)!+ } (24)

The expansion of the angular parts are

sin(m) = SectIy)7 :rml y) , (25)
and N ly)m
cosmé) = % . (26)

The termsr™ cancel in the product of these expansions as ex-
pected. The time dependent part is expanded ifrinally the
expansions are inserted in the Hamiltonian (6), which is expanded
analytically in the deviation variables to high order, using a sym-
bolic manipulation program. The procedure to generate atransfer
map from a Hamiltonian is described in [10], this basically in-

ET™™(r, 0, 2)om, EJE(T, 0, 2)om and ETE(r, 6, 2)am, they are volves integrating a set of ordinary differential equations for the

given in [9].

B. Vector potentials

The vector potentials become

1
Adr.0.2) = = nzr; E.(r, 6, Dnm , (16)
and
1
Ao(r.0,2) = =3 (E]™(r, 0, 2)om+ EJ 5,0, Do)
nm
17)

and

21 ™ TE
A(r,0,2) = o nE,m (Er (r,0,2)nm+ E; =(r, 0, Z)nm) .
(18)

coefficients of the Taylor series expansion. The system of ode’s
is extended by one for integrating'z) and one for integrating
ct1(2).

VI. CEBAF Cavities

As a first application of this approach we use the longitudinal
electric field on axis for a typical CEBAF RF cavity. This field
has been calculated using SuperFish and the coefficients in the
expansion ofEy(z) are presented in the table below. We have
A =02m, f = 1497 Mhz. The data is normalized to give a
gradient of 1 MeV/m, and = 0.35m. Furthermore we present
the data in Figure 1. In Figure 2 we plot the incremental energy
increase (eq. 12) for the reference particle with the assumption
thatg = 1 and where we have chos¢n= /2.

Work is in progress to apply the full power of the machinery
presented in this paper to realistic cavities. For that purpose, the
coefficients of the TM and TE modes are obtained by a Fourier
transform of the MAFIA field data to high order [9].



Expansion coefficienta, for Eq(2).

an

0.2287767

-.5776482

0.7384962

1.396168

0.3219303

-.1126080

0.01861269

0.00311060

)

0.008141764#

-.024980009

-.06243902

-.01799315

0.007256918

-.001471599
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VIl. Conclusion

We have shown, in the Hamiltonian context, how to derive
symplectic transfer maps in the presence of acceleration. Subse-
guently we have shown how to derive transfer maps for realistic
RF cavities. The method is general purpose and able to han-
dle RF quadrupole and higher multipoles, limited only by the
availability of Fourier coefficients of the expansion coefficients.
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Figure. 1. Longitudinal electric field on axis fora CEBAF cavity. proceedings and CEBAF-PR-93-003.
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Figure. 2. 9y, /9zwith 8 = 1 and¢g = 7/2.



