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Abstract

Current modeling of transfer maps for superconducting RF cav-
ities at CEBAF includes only linear effects [1], [2]. Here we
extend the transfer mapping modeling capability to include ar-
bitrary order field information generated from the MAFIA field
data. We include coupler kicks, normal and skew quadrupole
focussing and higher order effects.

I. Introduction

Use of a Hamiltonian and associated conjugate variables is a
prerequisite in the correct treatment of higher order effects and
ensuring that the resulting transfer maps are symplectic. Much
effort has been spent on creating realistic transfer maps for dif-
ferent magnets in the fixed energy case [3], [5], [6]. Here we
present an extension of this work to the case where the design
energy changes due to RF cavities.

The first part of this paper gives an introduction to the deviation
variables and Hamiltonian used in the construction of transfer
maps in the energy dependent case. The second part of the
paper introduces the fields and the transfer map calculations for
RF cavities. Finally we show how to derive transfer maps for
elements that change the design energy, and give some examples
for the CEBAF cavities.

II. Hamiltonian in Deviation Variables

Using standard techniques [4], [5] we derive the Hamiltonian
in cartesian coordinates(x, y, t) with z as the independent vari-
able as

K = −q Az−
√

pt2

c2
−m2c2− ((px − q Ax)2+ (py − q Ay)2) .

(1)
We introduce deviation variables wrt. the design orbit and the
(z-dependent) design energy:

p1
t (z) = −

√
m2c4+ p2

1(z)c
2 = −γ (z)mc2 , (2)

wherep1(z) = β(z)γ (z)mc is the design momentum, and wrt.
the time of flight of the design orbit:

t1(z) =
∫

1

β(z)c
dz . (3)

The scaling variables are wrt. a fixed momentump0, usually
chosen to be the final momentum. This leads to the transverse
deviation variables:

X , Px = px

p0
, Y , Py = py

p0
, (4)
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and for the temporal phase space deviation variables:

τ = c(t − t1(z)) , Pτ = pt − p1
t (z)

p0c
. (5)

Using this the Hamiltonian with arbitrary vector potential entries
becomes, usingB1

ρ = p1/q and f = β(z)γ (z)
β0γ0

H = γ

β0βγ0
− τ

β0γ0

∂γ

∂z
− Pτ
β
− Az

B0
ρ

(6)

− f

√
1− 2Pτ

fβ
+ P2

τ

f 2
− (( Px

f
− Ax

B1
ρ

)2+ ( Py

f
− Ay

B1
ρ

)2) .

Arbitrarily complicated magnetic fields can be handled by insert-
ing the appropriate vector potentials. From Hamilton’s equation
we have, assumingAx(0, z, t) = Ay(0, z, t) = 0

Ṗτ |design= ∂H

∂τ
|design≡ 0⇒ ∂γ

∂z
= − q

mc

∂Az(0, z, t)

∂τ
, (7)

which gives the equation for the energy increase.

III. Simple RF Fields
Here we consider standing-wave fields in a cavity with axial

symmetry i.e. we only get the angle independent TM modes.
following [7] an appropriate expansion forEz is

Ez(r, z, t) =
N∑

n=1

an I0(knr ) cos
(
(2n− n0)

πz

2d

)
sin(ωt + φ0) ,

(8)
with

k2
n = β2

n −
(ω

c

)2
=
(
(2n− n0)

π

2d

)2
−
(ω

c

)2
. (9)

The condition n0 = 1 corresponds to the condition that
Ez(r, d, t) = 0. An equivalent expression for the time inde-
pendent vector potentialA(r, z, t) = A(r, z) cos(ωt + φ0) is:

Az(r, z) = 1

ω

N∑
n=1

an I0(knr ) cos(2n− n0)
πz

2d
, (10)

and

Ar (r, z) = 1

4d f

N∑
n=1

an

kn
(2n−n0)I1(knr ) sin(2n−n0)

πz

2d
. (11)

The energy gain of the reference particle is given by the differ-
ential equation

∂γ

∂z
= q

mc2
E0(z) sin(ωt1(z)+ φ0) , (12)

whereE0(z) is the on axis gradient given by

E0(z) = E0
N∑

n=1

an cos
(
(2n− n0)

πz

2d

)
. (13)



          
In practice RF cavities are phased to achieve maximum energy
gain for a given field amplitude. In our approach a working point
is found by using a two-dimensional Newton method where we
vary the field amplitude and the phase to find a given energy
increase which is to first order independent of the phase.

IV. RF Multipole Fields

Following standard techniques [8] here we consider the gen-
eral RF field expansion inside a cylinder. TM and TE mode mul-
tipole fields starting with dipole terms are handled. The terms
m = 0 correspond to the fields in the previous section, the term
m= 1 correspond to a dipole field, the termsm= 2 correspond
to quadrupole fields, etc. Since cavities are no longer assumed to
be mirror symmetric we have to use both cos(βnz) and sin(βnz)
terms in the Fourier series expansion. In this case we need a to-
tal of 8 independent terms per mode (n,m) to describe the fields
adequately.

A. TM and TE modes

An appropriate expansion forEz becomes

Ez(r, θ, z)nm = Im(knr )Ez(θ, z)nm (14)

where

Ez(θ, z)nm = cos(βnz)
(
AT M

nm sin(mθ)+ BT M
nm cos(mθ)

)
+ sin(βnz)

(
CT M

nm sin(mθ)+ DT M
nm cos(mθ)

)
The TE modes are derived from

Bz(r, θ, z)nm = 1

c
Im(knr )Bz(θ, z)nm (15)

where

Bz(θ, z)nm = cos(βnz)
(
AT E

nm sin(mθ)+ BT E
nm cos(mθ)

)
+ sin(βnz)

(
CT E

nm sin(mθ)+ DT E
nm cos(mθ)

)
We omit the full expansions for the fieldsET M

θ (r, θ, z)nm,
ET M

r (r, θ, z)nm, ET E
θ (r, θ, z)nm and ET E

r (r, θ, z)nm, they are
given in [9].

B. Vector potentials

The vector potentials become

Az(r, θ, z) = 1

ω

∑
n,m

Ez(r, θ, z)nm , (16)

and

Aθ (r, θ, z) = 1

ω

∑
n,m

(
ET M
θ (r, θ, z)nm+ ET E

θ (r, θ, z)nm
)
,

(17)
and

Ar (r, θ, z) = 1

ω

∑
n,m

(
ET M

r (r, θ, z)nm+ ET E
r (r, θ, z)nm

)
.

(18)

V. Transfer Maps for RF Cavities
In this section we describe how to obtain the arbitrary order

transfer map for RF cavities in the deviation variables

x, Px, y, Py, τ, Pτ . (19)

Given the requested energy increase and phase set point, the
transfer map will be derived as a Taylor series and transformed
into Lie algebraic form for use in lattice design and tracking
codes.

We start by expanding all fields in cartesian coordinates

r →
√

x2+ y2 , (20)

and

ωt → 2πτ

λ
+ ωt1(z) . (21)

The vector potential in cartesian coordinates is

Ax = x Ar − y Aθ√
x2+ y2

, (22)

and

Ay = y Ar + x Aθ√
x2+ y2

. (23)

For generalm the expansion of the Bessel functions is

Im(kr) = r m

(
1

2

)m

km

[
1

m!
+ k2 r 2

4 (1+m)!
+ · · ·

]
(24)

The expansion of the angular parts are

sin(mθ) = =(x + I y)m

r m
, (25)

and

cos(mθ) = <(x + I y)m

r m
. (26)

The termsr m cancel in the product of these expansions as ex-
pected. The time dependent part is expanded inτ . Finally the
expansions are inserted in the Hamiltonian (6), which is expanded
analytically in the deviation variables to high order, using a sym-
bolic manipulation program. The procedure to generate a transfer
map from a Hamiltonian is described in [10], this basically in-
volves integrating a set of ordinary differential equations for the
coefficients of the Taylor series expansion. The system of ode’s
is extended by one for integratingγ (z) and one for integrating
ct1(z).

VI. CEBAF Cavities
As a first application of this approach we use the longitudinal

electric field on axis for a typical CEBAF RF cavity. This field
has been calculated using SuperFish and the coefficients in the
expansion ofE0(z) are presented in the table below. We have
λ = 0.2 m, f = 1497 Mhz. The data is normalized to give a
gradient of 1 MeV/m, andd = 0.35 m. Furthermore we present
the data in Figure 1. In Figure 2 we plot the incremental energy
increase (eq. 12) for the reference particle with the assumption
thatβ = 1 and where we have chosenφ0 = π/2.

Work is in progress to apply the full power of the machinery
presented in this paper to realistic cavities. For that purpose, the
coefficients of the TM and TE modes are obtained by a Fourier
transform of the MAFIA field data to high order [9].



            

n an

1 0.2287767

2 -.5776482

3 0.7384962

4 1.396168

5 0.3219303

6 -.1126080

7 0.01861268

8 0.003110609

9 0.008141764

10 -.02498009

11 -.06243902

12 -.01799315

13 0.007256913

14 -.001471598

Table I

Expansion coefficientsan for E0(z).
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Figure. 1. Longitudinal electric field on axis for a CEBAF cavity.
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Figure. 2. ∂γ1/∂z with β = 1 andφ0 = π/2.

VII. Conclusion
We have shown, in the Hamiltonian context, how to derive

symplectic transfer maps in the presence of acceleration. Subse-
quently we have shown how to derive transfer maps for realistic
RF cavities. The method is general purpose and able to han-
dle RF quadrupole and higher multipoles, limited only by the
availability of Fourier coefficients of the expansion coefficients.
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