Analytic Electrostatic Solution of an Axisymmetric Accelerator Gap

John K. Boyd
Lawrence Livermore National Laboratory, P.O. Box 808
Livermore, California 94550, USA

Introduction modified Bessel functions. It is thus solved by a linear combi-

) nation ofl; (kr) andK, (kr) that satisfy the zero boundary
Numerous computer codes calculate beam dynamics of ¢qngition atr = a and the derivative discontinuity condi-

particles traversing an accelerating gap. In order to carry outig, Inserting the appropriatey, (r, ') into Eq.(2)Ga is

these calculations the electric field of a gap must be determingq which satisfies the necessary properties and is special-

[1,2]. The electric field is obtained from derivatives of the sc;oq g a region with a fixed radial boundary and thus a

lar potential, which solves Laplace’s equation and satisfies thyichiet houndary condition appropriate to an accelerator gap.
appropriate boundary conditions. An integral approach [3,4] ) (k)
0 <

for the solution of Laplace’s equation is used in this work since G = DZBI dk cosk(z— 2)

the objective is to determine the potential and fields without T 0 1o (ka)

solving on a traditional spatial grid. The motivation is to

quickly obtain forces for particle transport, [5] and eliminate (1o (ka) Ky (kry) =K (ka) 1 (kr,)) 4
the need to keep track of a large number of grid point fields. ) o ) _( )
The problem then becomes one of how to evaluate the appro- N EQ.(4)r_ is the minimum of,r* ¢, is the maximum
priate integral. In this work the integral solution has been coff .T" , and bothl, an&, are zero order modified Bessel
verted to a finite sum of easily computed functions. functions.

Representing the integral solution in this manner provides a  Before the accelerator gap the wall potentiapjs and
readily calculable formulation and avoids a number of difficulfter the gap the potential i, . The total potential is thus

ties inherent in dealing with an integral that can be weakly cqfnstructed as the sum of a constant and an unknown scalar
vergent in some regimes, and is, in general, highly oscillatornction which is odd irz

Formulation of the Scalar Potential Integral
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The Laplace equation to be solved in cylindrical coordi- Potal = 3 (@, +®) 0 ©®)

nates for an accelerator gap is,
where@ now solves Eq.(1). The integral solution¢or is,
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with the value of the potential prescribed at radius . For axi- (f,2) = —[ dx- ) sinxz[ dz'¢(1,Z) sinxz (6)
symmetry in cylindrical coordinates, a Green'’s function is 0 0 0
obtained by first expressing the delta function in terms of a where Eq.(6) is a surface integrah(1, 2') is the value of

trigonometric expansion [6]. The Green’s function is then
expanded in terms of the same functions used for the delta
function expansion, but with an unknown radial function

the potential on the wall, and pipe radius normalized variables
areused,x = ak ,f =r/a ,2=2z/a ,andthe normal-
ized gap width isv = w/ (2a) . Along the wall beyond the

O (1217 - gap z>W the potential is constant with a boundary condition
L o ®© of (1,2) = (@,—@,) /2. For complete generality the
G(% %) = E_ZE Z I dk bouqdary cond!tlon in the gap whege< W is written as a
e & 0 Fourier expansion,
em®-9) cos[k(z-2)]g,,(r,r") 0(L2 = (9,—9) > Asin(C 2 (7

(2) n=1

The equation solved by the radial function after specializ- B R , : .
ing to axisymmetry,m = 0 , is as follows. whereC_ = n1v/ (2W) . Using Eq.(7) in Eq.(6) it is found that

o(f.2) = (9,—@) (@t > @) /m  where,

100 90 , _  4n .
Tard 5y 0-K°Gy = - 76(r-r) 3)
_ _ _ _ o) - [1SiNXz[]
The homogeneous version of Eq.(3) is the equation for the P = [ dXq ) CoOSXWT— — (8)
0
0

* Work performed for the US Department of Energy by Lawrence Livermore ) L )
National Laboratory under contract W-7405-ENG-48. is derived from the part of Eq.(6) havirig> W and is



from the gap wherg<w Integral Approximation Technique

The integrals needed to specify the solution in Eq.(14) are
A o o (XT) S given in Eq.(8)-(13). All the required integrals in Eq.(8)-(13),
n,r lo(X) have integrands consisting of a ratio of Bessel functions multi-
plying trigonometric functions. The method of obtaining the

{sin[ (C.—x)W] sin[(C.+x)W] } integrals in this work is to first approximate the ratio of Bessel
n n
9)

0
I

functions and then integrate the resulting expressions. The
form of the ratio which is useful fop, ¢, d@,/dz and
dg,/dz comes from the following expression,

Cn—x B Cn+x

From the definition E = —O¢ the field solution requires

derivatives ofg, andp_ . [ (xT I (XT)
0 n oD _ e sX 1+|jeSXO__1|] (15)
Iy (X) o lo(® O
d © L (XP)
%’ = [ olxllW cosxiv sinxz (10)
0 wheres = 1-7 . The right side of Eq.(15) is an equivalent but

more advantageous way of representing the ratio of Bessel
functions, since the expression in parenthesis is a function that
begins at zero and rises to an asymptotic value. Consequently,

do ) (xP) the approximation is to express the Bessel function ratio in
—2 = J’ dx-> COSXW COSXZ (11) terms of a finite sum of exponentials raised to a negative
dz 0 lo(X) power.
do, ° I, (XF) | (xi
— = A [ dx XSinxz O(Xr) — SX 1) O (1) 00X
dr n_(')' I (X) () =€ |:1+AsymD1+ z y\He D} (16)
{sin[(cn—x)\?v] sin[(Cn+x)\7v]}
C,—X Cp+x (12) In like manner the form of the Bessel function ratio for
dg,/di and dg,/df comes from the following expres-
@ M O gy e PRGN S P} a
lo (%) 1509
sin[ (C,—x)W] sin[ (C_+x)W]
[ C,—x a C,+X }
(13) Again the approximation is to express the Bessel function

The complete gap solution can now be written in terms ofatio in terms of a finite sum of exponentials.
@, @, and their derivatives.

I, (xF) 5@y
(¢, + (pz) 0, -0 © 1 e—SX|:A(2) h+ y(z) e 9 Dj| (18)
Pootal = 12 e L Iy (X) Sym[] Izl | 0

To illustrate what has been gained by the approximation,

- d(po © d(pn _the new forrr_l ofg, is examined in detail. Substituting Eq.(16)
E =- — W Z T into Eq.(8) yields,
J’dxe‘sx[1+A(1) Op + Z y»ed ’X%} coscSIX?
-o,[d “d
A ka4
ma | dz =1 dz where nowq, is expressed in terms of a sum of integrals. The

(14)



fundamental integral is, and 6I(1) constants can in principle be determined. The diffi-

o _ culty with obtaining this solution is that th&(Y)  constants
119 (s W 2) = J- dxesX costDszZE (19) can pe imaginary rather than strictly regl. As a consequence,
0 0 x the fit function then becomes exponentials multiplied by sine

and cosine functions, and this causes the fit function to be rip-
which depends on the normalized gap width, radial and axiapled. To avoid this problem thél(l) constants are specified
position. The important observation to make is that Eq.(22) i® be known positive real numbers. Heuristically the large val-
the Laplace transform afosx (sinxz/x) . If an auxiliary  ues of 6|(1) determine the fit near zero and smaller values
integral having a well known Laplace transform is defined, tend to have an effect over an extended range. The set of equa-
tions that then has to be solved for a particular radius is,

A (82 = I o= E’%-ZE - atar%?sE ! 1 .—0Wx _ O f(Xi,f) 0
o @0 Tt = Gogp ot @
it can be seen the parameter shifting property of the Laplace -
transform gives, which is justN equations itN  unknowns. In Eq.(25) the
asymptotic value is defined to bexae 100 , and,
1(19) (s, 0 2) = (1D (s=iW, 2) +1(D (s+iW,2)) L (<)
2 f(x7) = e~ _1
lo(X)
_ }[ ta Z+W + ata 2—\7\/} The solution procedure_ for Eq.(25) i_s_ to first_ solve for a stan-
2 s 21) dard lower, upper matrix (_Jl_ecomposmon. This resuI'F only
Consequentlyp, can be written entirely in terms of depends_ on already_ speC|f_|é¢1) _constants 6!”0' is only done
1(19) (5, % 2) 0 once. It_ is theAn multiplied times the right h_angl side of Eq.(25)
P for particularf values that can vary. In principle Eq.(25) can
be symbolically solved to obtain(l) (f) , however the
0 = Hl + AS(%H (1) (s, W, 2) expressions rapidly get unwieldy fod > 4

Conclusions

(1) D (@1 ™, w, 2H
* AsymI Zlyl I ETS+ 5. W. 25 The solution of Laplace’s equation has been formulated in

22) an integral form using a cylindrical coordinate Green’s func-

In an identical manner to the treatmentgf  , the Eq.(16)ion. The integral form of the solution has been converted into
and (18) approximations are inserted into Eq.(9) to Eq.(13) ta finite sum of readily calculable functions. This derived solu-
give approximations to those functions. In order to obtain thegen avoids the difficulties of the original, weakly convergent
functions it is necessary to compute integrals similar to infinite integral with an oscillatory integrand. The main
Eq.(19). As before these integrals can be derived from an aapproximation that has been used in the derived solution is to
iliary integral. In general there is a similar relation for the plugrite the finite sum in terms of Laplace integrals. In this frame-
and minus superscript integrals. work the solution is formulated for an arbitrary variation of the
electric field in the gap.

() = L1 (5= W) +1() (s+ 2 %)
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