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A perturbation method is used to obtain analytic expressions
for the multipole longitudinal and transverse beam
impedance for an arbitrary waveguide whose radius is slowly
varying  and for the specific case of a symmetric small-angle
taper.  This method is also applicable for a particle in a
wiggler undergoing periodic motion.

I. INTRODUCTION AND BASIS
 OF THE METHOD

In linear colliders, the particle beam traversing the structure
will tend to possess a corona of stray particles with large
transverse amplitudes.  In  order to minimize the deleterious
effects of these particles on the luminosity of the beam a
scraper is often used to disassociate them from the main
beam.  However, the scraper may lead to an enhanced
transverse wake-field and hence lead to a diminishing of the
beam emmittance.

The method delineated below to calculate the beam
impedance, relies on the angle of the taper being small, as is
also required in practice to minimize beam degradation.  In
order that the expansion remain valid it is required that
k0b<<1 and k0bb’<<1  (where b db dz' /= ).  The local change
in b(z), is required to be small, however the overall change
may be large1.

II. APPLICATION OF METHOD TO THE
MONOPOLE LONGITUDINAL IMPEDANCE

In the frequency domain the electric and magnetic field is
expressed in terms of A, the vector potential:
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where k0, is the free space wavenumber, Z0 is the impedance
of free space and the vector potential, for monopole a mode,
lies along the axis of the structure, A = zAz.  The wave
equation, upon applying the Lorentz condition, for a charge
Q traveling with a velocity vz (= c /βz) offset from the axis by
r0, becomes:
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Here terms of order γ-2 have been neglected, and the enhanced
wavenumber and axial potential are given by:
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The wave equation, (2.2), is solved iteratively using the
perturbation procedure outlined in the previous section.
Performing iterations about the zero order equation allows the
following equations to be obtained for the first order and n-th
order iterations:
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where e dn n
1 11= -  and dn

1  is the Kronecker delta function.
The Green’s function for the left hand side of the zero order
part of (2.4), viz, G r r r r r( , ' ) ' ln( / ' )= , allows the general
solution to the above equation to be developed as:
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where an(z) is a constant of integration and the quantity in
parentheses is evaluated at r=r’.  Thus the zero order, and
first order solution are obtained as:
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where θ is the unit step function.  The an(z) functions are
obtained upon consideration of the boundary condition that
the electric field along the taper is zero along the plane of the
transition:

E b z Ez r+ =' ( ) 0 (2.7)

The above boundary condition is applied successively at each
iteration:
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In the above, the total derivatives are evaluated taking into
account b(z) variation.  This allows the wave equation to be
solved in powers of k0 .  The longitudinal impedance is given
by the inverse Fourier transform of the wake field and this is
readily rewritten in terms of the electric field as:
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This is transformed into:
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and integrating by parts enables the impedance to be obtained
as:

Z
Z

yL
i

i

n

=
=
Â0

1p
( ) (2.11)

The impedance resulting from the application of this method
up to third order in k0 is given by:
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Comparing the above with the impedance obtained by
Yokoya2 it is evident that the first term in parentheses
corresponds to his  result and all additional terms are higher
order corrections.

Applying this method to the impedance of a symmetric
cosinusoidal taper, b z b d z

g( ) cos ( )= -0
2

2
p  gives3:
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where the three parameters, $z1, $z3  and α are given by:
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Thus, it is evident that for k0b0<<1 the first term of (2.14) is
sufficient for the calculation of the impedance.  However, in
the opposite limit higher order terms must be retained.

0 10 20 30 40

-30

-25

-20

-15

-10

-5

0

Imaginary Impedance of Tapered
  Structure vs Frequency (GHz)

7th Order Terms

5th Order Terms

3rd Order Terms

Yokoya Term

Figure 1

Curves of the impedance function, given by (2.13) up to third
order in free space wavenumber, for b0 = 1cm, d = .3cm, and
g = 6cm, are illustrated in figure 1 (where additional terms up
to seventh order in k0 are also included).  The linear
functional dependence on frequency is indeed sufficient at
large wavelengths.  However, increasing the frequency
rapidly gives rise to significant non-linearity in the
dependence of the impedance on k0.  Indeed, for frequencies
in the neighborhood of 30 GHz the perturbation scheme is no
longer valid as is revealed upon inspecting higher order
perturbations.

III. EVALUATION OF THE
TRANSVERSE IMPEDANCE

The transverse impedance is evaluated by solving the wave
equation for a vector potential,  which in the frequency
domain, has components:
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The wave equation for a harmonic m, is transformed into:
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where the harmonics of the vector potential are given by:
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Using the Green’s function for the left hand side of (3.2) viz
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the wave equation is solved for the m-th order harmonic of
the vector potential, expanding about the zero order solution
enabling the n-order equation to be obtained in the form:
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where the functions within the integrals are evaluated at r=r’
and are given by:
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This enables the zero order solution to be obtained as:
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Further, iterations proceed using (3.5) and the remaining
constants of integration, a zz

n( )  and a zn
± ( ) are evaluated by

applying the condition that both the tangential electric field
and the azimuthal electric field are zero along the boundary:
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Here $D operating on y is defined by:
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This completes the calculation of the total field excited by the
m-th harmonic of the charge traversing the structure.

The longitudinal impedance is given by:
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and in terms of the vector potential:
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where (2.1) has been used and an integration by parts has
been performed.  Further, in cylindrical coordinates the
Panofsky-Wenzel theorem4 may be applied, enabling the
transverse impedance to be obtained as:
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This facilitates the transverse impedance to be obtained up to
zero order in k0 as:
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Here the transverse impedance has been doubled to convert
from an exponential variation to a cosinusoidal harmonic.
Additional higher order corrections, up to second order in k0

are readily included for the dipole mode (m=1):
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IV. DISCUSSION

The perturbation technique is an accurate method to evaluate
the impedance of slowly varying accelerator structures
consisting of waveguide with a sufficiently slowly varying
radius and for for a restricted frequency range.  For the
specific taper under consideration a first order perturbation is
augmented with additional higher order terms with
increasingly large frequencies up to the point at which the
perturbation scheme is no longer valid.

Additional work is in progress on extending the frequency
range in which the technique is valid and this is achieved by
enhancing the method with a higher order perturbational
technique.  In this case (2.2) becomes:
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The zero order part of (4.1) corrresponds to setting the right
hand side to zero.  Utilizing this method enables the back-
scattered wave to be taken into acccount and this enables the
real component of the impedance to be evaluated.  Further
work is also in progress on applying this technique to
investigate the beam impedance of a FEL wiggler.
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