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Abstract

In this communication we describe the results of computations of
3D nonlinear magnetic field for a dipole magnet. Computations
were carried out on vector computer CONVEX C120 by means
of program MSFE3D [1].

I. FORMULATION OF THE PROBLEM
We consider the differential formulation of the magnetostatic

problem for two scalar potentials [2], total –  and reduced –
�. Let 
F be a region with ferromagnetic material. We choose
some region
, which contains
F . Let �0 be a boundary of the
region 
 and 
A = 
 n 
F . � is a boundary between 
F and

A. Then we have equations

div(�r ) = 0; x2
F ; (1)

div(r�) = 0; x2
A; (2)

with the boundary conditions

�(@ =@n) = @�=@n� n�HS ; x2�; (3)

 = �+ �S ; x2�; (4)

��0; x2�0: (5)

Function � = �(jr j) is given from the closed interval 1 �

�
�
� � � �� where �

�
and �� are known constants. VectorHS

is computed by the Biot-Savart’s law

H
S (x0) =

�0

4�

Z


S

J�r
1

jx� x0j
d
S ;

where 
S is a source region,J is a known vector of current den-
sity, �0 is the permeability of free space, jx� x0j is the dis-
tance between points x and x0. Potential �S is defined from the
Laplace equation in the region 
F

��S(x) = 0; x 2 
F ; (6)

with the boundary conditions

@�S

@n
= �n�H

S ; x 2 �;

Z

�

n�H
Sds = 0: (7)

It is known that the generalized solutions of the formulated
boundary value problems exist. The generalized solutionof non-
linear problem (1)- (5) is unique, and the generalized solution
of Neumann problem (6) - (7) is defined with constant. Finite
element approximations converge to the exact generalized solu-
tions.
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II. USING THE FINITE ELEMENT METHOD
As a finite element �
j , we choose convex hexahedron. Let us

divide 
 by the finite elements so that �
 = [�
j , 
i\
j = ;,
when i6=j, supposing also, that every face of element �
j is either
a subset of �0, or a face of the other element, and the boundary
� is formed by faces of the chosen elements.

We introduce in space with Cartesian coordinate system re-
lated to variable � = (�1; �2; �3), the linear shape functionsN e

m

for cube [�1; 1]3

N e
m(�) = (1=8)(1 + �m1�1)(1 + �m2�2)(1 + �m3�3);

m = 1; : : : ; 8;

where the coefficients �mk are chosen as 1 or -1 so that N e
m is

equal to 1 in the vertex with numberm and 0 in any other vertex.
In view of that the cube [�1; 1]3 turns into the element �
j under
the use of the transformation [3]

xk =

8X
m=1

x
j;m
k N e

m(�); k = 1; 2; 3;

where xj;mk , k = 1; 2; 3 are coordinates of the element �
j vertex
with number m, the base functions Nm(�(x));m = 1; :::8 on
element �
j may be obtained. We shall find the solutions of the
problems (1)-(5) and (6)-(7) in the form

 (x) =
X
j

 jNj(x); x2�
F ;

�(x) =
X
j

�jNj(x); x2�
A; (8)

�S(x) =
X
j

�SjNj(x); x2�
F ;

where  j ; �j; j = 1; :::;M and �Sj ; j = 1; :::;MS are unknown
potentialsvalues in nodes of the space mesh, which is obtained as
a result of partitioningthe region �
. Substitutingthe expressions
for and� from (8) intogeneralized formulationof problem (1)-
(5) and taking the boundary conditions into account, we perform
the equation
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Z


A
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+
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rNi � rNjd
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Z

�

Nin �H
SdS+ (9)

+
X
xj2�

�Sj

Z


A

rNi � rNjd
; i = 1; :::;M:



Potential �S is found from the equation

X
xj2�
F

�Sj

Z


F

rNi � rNjd
 = �

Z

�

Nin �H
SdS; (10)

i = 1; :::;MS:

Note that there is no need to solve this equation in whole 
F ,
becauseHS = �r�S is orthogonal to gradients of the functions
which are equal to 0 on the boundary of
F [4]. I.e. it is enough
to solve equation (10) in some situated near boundary volume of
the region, completing the boundary conditions.

The integrals over regions 
F ;
A in (9) - (10) are computed
by summation of the contributions from separate elements �
j.
In such an element � is a constant, its argument is computed in
the centre. The centre is the point, every coordinate of which is
the arithmetic mean of coordinates of hexahedron vertices.

III. SOLVING THE NONLINEAR SYSTEM
Let us write the discretized system of the nonlinear algebraic

equations (9) with sparse matrix as

F (�)y = f; � = �(y): (11)

Usually for solving such a system some linearization is used
and then the finding of the solution of system (11) reduces to
the sequential solving of the linear problems. General iterative
scheme for solving the nonlinear equation (11) has the form

Bn

yn+1 � yn

�n
= �(Fnyn � f); n = 0; 1; :::; (12)

where y0; F0; �0 are given. Two kinds of this process are usually
used:

1. Bn = Fn, �n�1;
2. Bn = F

0

n, where Fn
0

is Jacobi matrix.
We use iterative scheme (12) forBn � Fn and �n2(0; 1]. The

parameter �n is chosen depending on behaviour of � on every it-
eration. Note that the general theory of the iterative process (12)
for self-adjoint, positive definite operator F is given in book [5].

Independently ofBn form, the linearized system of equations
on every iteration should be solved

Az = b; (13)

where A– symmetric, positive definite sparse matrix. Usually
for this purpose the incomplete Cholessky decomposition with
conjugate gradient method is used [6]. The special algorithms
developed by authors in [7] are used for solving the equation (13)
on the vector computer CONVEX C120.

IV. EXAMPLE OF 3D MAGNETOSTATIC FIELD
CALCULATION

As an example of 3D magnetostatic field calculation we
present here the computed results for dipole magnet of the
setup EXCHARM. More information about this computations
was published in [4,8]. The setup EXCHARM is a forward-
spectrometer for investigation of hadron production of charmed
particles and the indication of the narrow resonances in neutron-

Figure 1. Schematic view of the SP-40 magnet.

nucleus interactions on the U-70 accelerator, at IHEP, Ser-
pukhov, near Moscow. It is a further development of spectrome-
ter BIS-2 [9]. The spectrometer includes the following basic ele-
ments: the SP-40 magnet, proportional chambers, a charged par-
ticle identification system, a Cherenkov shower detector, scin-
tillation hodoscopes, an electronic system for event preselection
and data acquisition.

The spectrometer magnet is a dipole with external dimensions
450�320�305 cm3, with aperture 274�48 cm2. The length of
the magnet is 190 cm and the working magnitude of magnetic
field is 0:75 .The schematic picture of the magnet is shown in
fig.1.

All computed results are presented here in figures as the rela-
tions to the required magnetic field valueB0 in the magnet cen-
tre, whereB0 is equal to0:75T. The comparison of the computed
(42800 nodes) and experimental curves for the relative main field
componentBy(z)=B0, has shown ( fig.2 ) that inside the magnet
the difference is not more than � 10�3. In fig.3 the computed
and experimental results are presented for the relative main com-
ponent of the magnetic field for x = 0 cm., y = 19 cm.

In fig.4 the main field component at the end region of the mag-
net are given for y = 0 cm. The computations have shown that
the absolute values of the field components Bx=B0 and Bz=B0
in this region are not more than 2,7 % and 4 % accordingly.
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