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Abstract

I n thiscommuni cation we describe theresultsof computationsof
3D nonlinear magnetic field for a dipole magnet. Computations
were carried out on vector computer CONVEX C120 by means
of program MSFE3D [1].

|. FORMULATION OF THE PROBLEM

We consider the differentia formulation of the magnetostatic
problem for two scalar potentials [2], total — ¢ and reduced —
¢. Let Qp bearegion with ferromagnetic material. We choose
some region €2, which contains2x. Let I'y be aboundary of the
region2 and 2, = Q2 \ Qp. I isaboundary between 2 and
4. Then we have equations

div(uVep) = 0, rE€Qp; 1)
div(Vé) =0, 2E€Q; 2

with the boundary conditions
w(0¢/0n) = 0¢/0n —n-H,|  z€T; (3)
v =¢+¢° zel’; (4)
0, z€Ty. (5)

Function 1 = u(|V4|) is given from the closed interval 1 <
py < p < p* where i, and p* are known constants. Vector H*
is computed by the Biot-Savart’slaw

HS(xo):Z—O/JxV
T
Qs

dQSa

|z — ¢

where ()¢ isasourceregion, J isaknown vector of current den-
sity, po is the permeability of free space, |« — «¢| is the dis-
tance between pointsx and x. Potential ¢° is defined from the
Laplace equation in theregion Q2 x

Ap®(x) =0, x€Qp, (6)

with the boundary conditions

5
99~ =-—nH",

r
on zeh

/n~HSds =0. (7

T

It is known that the generdized solutions of the formulated
boundary value problemsexist. The generalized solutionof non-
linear problem (1)- (5) is unique, and the generalized solution
of Neumann problem (6) - (7) is defined with constant. Finite
element approximations converge to the exact generalized solu-
tions.
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I1. USING THE FINITE ELEMENT METHOD

Asafinite element ©2;, we choose convex hexahedron. Let us
divide 2 by thefinitelements so that @ = UQ; , Q,1Q; = 0,
when i, supposing also, that every face of element 2; iseither
asubset of T'y, or aface of the other element, and the boundary
I' isformed by faces of the chosen elements.

We introduce in space with Cartesian coordinate system re-
lated to varigble & = (&1, €3, &3), thelinear shape functions V5,
for cube[-1,1]3

Ny (€) = (1/8)(1+ 0mi&1) (1 4 omala) (1 + omals),

m=1,...,8,

where the coefficients ¢, are chosen as 1 or -1 so that VS, is
equal to 1inthevertex with number i and 0 in any other vertex.
Inview of that the cube[—1, 1]3 turnsinto the element ©2; under
the use of the transformation [3]

8
rp=»_ #"NE(E), k=123,
m=1

wherez7™, k = 1,2, 3 are coordinates of the element Q2; vertex
with number m, the base functions N, (§(x)),m = 1,...8 on
element Q; may be obtained. We shall find the solutions of the
problems (1)-(5) and (6)-(7) in theform

W(x) = Z¢ij(x), 2€Qp:

$(w) =D ¢iNj(x), w€Qq; (8)
j

¢S(x) :Z(f)?N]’(l‘), xEQF’
J

where;, ¢;,j =1,..., M and ¢7,j = 1,..., Ms are unknown
potential sval uesin nodes of the space mesh, whichisobtained as
aresult of partitioningtheregion 2. Substitutingthe expressions
for ¢» and ¢ from (8) intogeneralized formulation of problem (1)-
(5) and taking the boundary conditionsinto account, we perform
the equation

> ¢j/ﬂvzvi.vzvjd9+ > wj/vzvi.vzvjdm

CIEQr iy oiel &,

+ Z ¢j/VNi~VdeQ:—/Nin~HSdS+ ©)
T

TIEQA Qa

+> ¢>f/vzvi CVN;dQ, i=1,.., M.
ziel Q.



Potential ¢ isfound from the equation

> ¢f/VNi~VdeQ: —/Nin~HSdS, (10)
wI€0r  qp r

i=1,.., Ms.

Note that there is no need to solve this equation in whole Q ¢,
because H® = —V¢* isorthogonal to gradientsof thefunctions
which are equal to 0 on the boundary of Q¢ [4]. |.e. it isenough
to solve equation (10) in some situated near boundary volume of
the region, completing the boundary conditions.

Theintegralsover regionsQ g, Q24 in (9) - (10) are computed
by summation of the contributions from separate elements ;.
In such an element y is a constant, its argument is computed in
the centre. The centreisthe point, every coordinate of whichis
the arithmetic mean of coordinates of hexahedron vertices.

[11. SOLVING THE NONLINEAR SYSTEM

Let uswrite the discretized system of the nonlinear algebraic
equations (9) with sparse matrix as

F(p)y =/,

Usually for solving such a system some linearization is used
and then the finding of the solution of system (11) reduces to
the sequentia solving of the linear problems. General iterative
scheme for solving the nonlinear equation (11) has the form

1= p(y). (11)

BHM:_(Fnyn_f)a n:O,l,...,
Tn

(12)

where yo, Fy, 7 aregiven. Two kindsof thisprocessare usualy
used:

1 By =F,, =1,

2. B, = F,'l where F,, isJacobi matrix.

Weuseiterativescheme (12) for B,, = F,, and 7,,€(0, 1]. The
parameter 7, ischosen depending on behaviour of i on every it-
eration. Note that the general theory of theiterative process (12)
for self-adjoint, positive definite operator Fisgivenin book [5].

Independently of B,, form, thelinearized system of equations
on every iteration should be solved

Az = b, (13)

where A— symmetric, positive definite sparse matrix. Usualy
for this purpose the incomplete Cholessky decomposition with
conjugate gradient method is used [6]. The specia agorithms
developed by authorsin[7] are used for solving the equation (13)
on the vector computer CONVEX C120.

V. EXAMPLE OF 3D MAGNETOSTATIC FIELD
CALCULATION

As an example of 3D magnetostatic field calculation we
present here the computed results for dipole magnet of the
setup EXCHARM. More information about this computations
was published in [4,8]. The setup EXCHARM is a forward-
spectrometer for investigation of hadron production of charmed
particles and theindication of the narrow resonances in neutron-
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Figure1. Schematic view of the SP-40 magnet.

nucleus interactions on the U-70 accelerator, at IHEPR, Ser-
pukhov, near Moscow. It isafurther devel opment of spectrome-
ter BIS-2[9]. The spectrometer includesthefollowingbasic ele-
ments: the SP-40 magnet, proportiona chambers, acharged par-
ticle identification system, a Cherenkov shower detector, scin-
tillation hodoscopes, an e ectronic system for event preselection
and data acquisition.

The spectrometer magnet isadipolewith external dimensions
450% 320305 cm3, with aperture 274 x48 cm?. The length of
the magnet is 190 ¢m and the working magnitude of magnetic
field is 0.75 .The schematic picture of the magnet is shown in
fig.1.

All computed results are presented here in figures astherela-
tionsto the required magnetic field value B, in the magnet cen-
tre, where By isequal to (.75 T. The comparison of thecomputed
(42800 nodes) and experimental curvesfor therelativemainfield
component B, (z)/ By, has shown ( fig.2) that insidethe magnet
the difference is not more than = 10~3. In fig.3 the computed
and experimental resultsare presented for therel ativemain com-
ponent of the magnetic field for x =0cm., y =19 cm.

Infig.4 themain field component at the end region of the mag-
net are given for y = 0 cm. The computations have shown that
the absolute values of the field components B, / By and B, / By
in thisregion are not more than 2,7 % and 4 % accordingly.
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Figure2. The comparison of computed and experimental data
for reletive field component B,/ B, for x=0 cm., y=1 cm.
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Figure 3. The comparison of computed and experimental data
for reletive field component B,/ B, for x=0 cm., y=19 cm.

Figure4. B, /B, field component distribution at the end region
of the magnet for y=0 cm.
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