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Abstract Il. Radiation Spectrum for a QPU

Recently two of the present authors (S. H. and S. S.) introduced he mth quasi-periodic lattice point is represented as [1], [2],
the concept of a new class of undulators, a quasi-periodic arfgl/
of magnet poles, to discriminate the rational higher harmonics of tana
radiation that are harmful in some synchrotron experiments. Ifm = M — (tana — 1) + (tana — 1) [mm + } . (@)

this paper the analytical formula of the radiation spectrum from . o )
the quasi-periodic undulator is reported. where tan is the tangent of the inclination angle of a 1D quasi-

lattice against a 2D square lattice. The symbel][represents
the greatest integer operator. The first term on the right hand
|. Introduction side in Eq. (2) corresponds to a periodic component of spacing
between the lattice points, the second term represents the con-
Ordinary undulators consist of a periodic array of magnet polggnt translation of lattice points, which moves the initial lattice
of alternating polarity. The radiation emitted in each magngbint 2, to the origin, and am is increased the third term quasi-
pole interferes with each other, producing enhanced emissiorpgfiodically increases biygane — 1) due to the irrational nature of
a fundamental frequency and its harmonics. Since a mixturetgf. Hence the distance between any two consecutive positions
the harmonics degrades the ratio of signal to noise in many €%: — 2,,_1) takes a value of 1 or tan, forming a quasi-periodic
periments, the higher harmonics are required to be eliminatgdpay_
In the high energy region of x-rays above 30 keV, however, it is A hasic magnetic structure for the planer QPU can be realized
practically difficult to exclusively pick up the fundamental radipy aligning positive and negative magnet poles alternately at the
ation. Hashimoto and Sasaki proposed a new undulator, whigh quasi-lattice points designated by Eq. (2) [1], [2]. From
comprises a quasi-periodic array of magnet poles [1], [2] afge symmetry of the 2D square lattice, where a 1D quasi-lattice
will be called "QuaSi-periOdiC undulator” (hereafter, referred t% embedded' we can restrict © tana < 1 without loss of
as QPU). No rational higher harmonics of the fundamental frgenerality. Thus we denotes the two distances between the quasi-
quency are contained in the radiation from the QPU. Here Watice points agl, d’(= d/tane > d). To realize a QPU, the
analytically formulate the QPU radiation spectrum. length of the magnet block should be shorter than the distance
In a normal planer periodic undulator (PU) an electron moveis
sinusoidally in the horizontal plane. It takes the timg/(c82) As in a regular PU we here assume that the magnetic field
that the electron traverses one period of the undulajpwhere B, (z) of the transverse QPU with’ poles has the sinusoidal
B, is the average longitudinal velocity. During this time thelependence
light travels the distance = iy/B; along the undulator axis, N1
SO that the light emitted by an _electron at a top of the sinusoidal B2 = Z By (—1)™ Cos[z (z— Zm)] ’ 3)
motion precedes the one emitted at the next top by the phase —= w

A¢p = 2nw/w1. Herew is the angular frequency of the light, and

1 is the resonant frequency of the undulator radiation given K{'€r€Bo is the peak magnetic field aad (= d'zy) the center of
w1 = 2y2y /(1 + K2/2) with the undulator angular frequencythe mth magnet region. The function G@g is here defined to

wy = 2rc/hy. Gathering the radiations from the individuaf2ke cose)for—z/2 < o < w/2and0otherwise. The magnetic

periods, one finds that the intensity is proportional to [3], [4], [gjeld distribu'gion withw = dis shown in Fig. 1. For the sake of
later convenience we here define analogue of the wave number,

) ” ko = m/w, and the undulation paramet&t, = (e By)/(mocky),

= . w ﬂi(N,]_)ﬁSIn(an_l) in the QPU

> exp <2”'mw_l) = n——< () | estimating the phase interference in the radiation from the

Sm(”w_l) QPU, we must sum up the phase differences of the individual
magnet poles instead of the periods in the PU. Then the function

whereN is the number of pel’iOdS of the undulator. This |mpl|eﬁ1at contains the phase interference of the QPU Wi‘[hnagnet
that the intensity of the undulator radiation is strengthened ges is

o = Nw1 With anintegen and that the spectrum has the harmonic

m=0

structure. 1S [ o,
= — explim { — (Zm —nm) —£fmg |, 4
The explicit formula of the radiation spectrum from the PU is Qe() N’ r;) p[ d {wz (ém = 1m) ” @

well-known and expressed by infinite series of Bessel function
[6], [7], [8]. In the next section we briefly review the irrationalV/"€r€
harmonic structure of the radiation spectrum from a QPU and w 2y%wo

give the explicit expression. w2 = d' 1+ K2+ (y60)* )



15 In the case of odd, the summatior,(w) is reduced to

1N s
Qr=odd(®w) = N Z g iy Gm—nm—irm (1)
m=0

which implies that it corresponds to the Fourier transform of
the quasi-lattice with positive and negative matters, since the
additional phase factor expizm) alternately changes the sign
asm increasing. Then the peak positiép, is shifted by the
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] Kpg = | 2 el —— 7). (12
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Longitudinal Position (d) In both the cases the resonant frequency of the synchrotron radi-
ation from the QPUoq is represented as
Figure. 1. Magnetic field distribution along the axis of the quasi- K
periodic undulator. wpg = Dy, (13)
4
K2 Itis emphasized that the resonant frequency of the radiation from
n = ﬂ/ —_—. (6) QPUwpqhasthe extr& dependence througtin kpq in addition
2d" 14 K2 4 (y6o) to throughw, while the one from a PU is a simple integer multiple

Inthe exponent of Eq. (4) the telim (w/w,) Zy, is the counterpart of ;. . L .
of the phase difference in the PU@m(w/w»). The factor 2inthe Evalu_atmg the rgdllatlon intensity from one magnet pole, we
phase of the PU reflects the fact that one period of a PU consf&@§ derive the explicit form of the spectrum formula
of two magnet poles. Since inthe free spaces betweenthe magnefj2, () N 2y2 K
regions the electron possesses the transverse velocity, the phas% 9 = 16r (‘y@o cospoFpq — Equ
of the electron against the light delays while the electron runs @ €C o
through the free spaces. The second term in the exponent of Eq. . 2
(4) containingy corresponds to this phase delay. The inélex + |7’9° Sm¢0FPQ| > Hpq (@) ,
Q. represents the order of the Bessel expansion of the sinusoidal
phase motion in the magnet regions. where, for an odd mode

Since for ever the second term in the exponentin Eq. (4) isan |: 2l2pq

2

(14)

integer multiple of Zi and then vanishes in the exponentiation, F,q =

2
the summatiorQ, () can be simplified as 1+ K2/2+ (y60)

S - X Z M - ﬂc COS<£qu> .+ (15)
Qr—ever(®) = W Z} € 2 s (7) ¢=odd E (qu — Z) 4 2
m=
2Kpq

which represents the Fourier transform of the quasi-periodic lat- — [

tice except for the additional termm. Following the description 1+ K2/2 4 (y6p)?

of the quasi-crystal [9], we can derive the approximated expres- DR Sl(,l) &) 8
sion of Q¢ (w). For largeN’ approximation, Eg. (7) can be easily X Z ) L ~+ pa’l _ = B} cos(zﬁpq) - (16)
rewritten as [9] (=odd 3 (Kpg — ©) T 2
Qrever(®) = Z i Xpa/2 sin(Xpq/2) P Keq ). (8) and for an even mode
X /2 w? ~
p.d Pa 2Kpq
Fogu =
where P 1+ K2/2 + (y6p)?
tana 1+tarfo S%kpq) 4 i
0q n<p+q1+tana)/<l+tana n) 9) Xegev:enf(k "y —B sm(zkpq),(m
Xpg = 2nq— (tana — 1) Kpq. (10) 2 M
2k
This implies that bright peaks occur at the discrete valukggs Gpg = [ = 5
where Xpq's are small and that intense peak positigips q) 1+K?/2+ (y6o)
should be associated with the Fibonacci sequence [9]. Hence, in DRoo) + SV (kpg) 8 e
general, there appears no rational higher harmonic in the radia- % S - 3 P - ;C S'”(Ekpq> -(18)
tion spectrum from the QPU. ¢=even 2 (Kpq — ¢)



In the spectral formula (14l pq (w/w1) is the structural function
given by

2
B sin(Xpq/2) Kpq
Hpq (w) = [W] 1) <w — 7&)2) . (19)
In Egs. (15)-(18)

. d'[1+ K?/2+ (y60)?]
Kpg = K 20
b w14+ K2+ (y6)°] " (20)

Intensity ((€2N"2y2)/(16T &C))

ST = ) hE0 Inep G0 (21)
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+ K2+ (voo) Figure. 2. Radiation spectra from the quasi-periodic undulator
g, = K? 23) with K = 1.0. The solid curve indicates the numerically com-
, =

41+ K2/2+ (y60)*]

puted spectrum and the dots correspond to the peaks given by

the analytical formula.

In the form factors (15)-(18) the ternisandC, given by
1 K2 2
B = + R+ () L (24)
[1+ K2+ (y60)%]” + (2K y 6o cosgo)? 1]

2Ky 6 co
c = Y 6o S¢O (25)

[1+ K2+ (v60)°] + (2K y60 cospo)* 2]

are understood as the contributions from the radiation in the free
spaces between the magnet poles in the QPU. 3]

lll. Concluding Remarks [4]

We derived the analytical formula of the radiation from the
QPU (14) under the assumption that the magnetic field is given
by Eq. (3). (5]

It is worth emphasizing that the intensity of the even mod¢€]
vanishes on axis as seen in the case of the PU. This is becdiibe
Gpq, consisting of S for even¢ and C, vanishes on axis [8]
(6o = 0). Furthermore, note that, although one infinite Bessel
seriesSém) for some¢ corresponds to one peak in the radiation
spectrum of the PU, a peak intensity of the QPU comes from all
the even series or the odd series. [9]

To confirm the validity of the analytical formula, we compare
it with the numerical computation of the radiation spectrum from
a QPU with the magnetic field given by Eq. (3). Figure. 2 shows
the radiation spectra of the QPU witk = 1.0 given by the
numerical and the analytical calculations. Here we take d
and tanx = 1/+/5. In the numerical calculation we assume the
number of poles to be 100. The full circles in Figure. 2 represent
the bright peaks of the spectrum designated by the generalized
Fibonacci integers. Thus one is convinced that the analytical
formula for the radiation from the QPU correctly gives the peak
position in the spectrum and the peak intensity.
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