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Abstract

Recently two of the present authors (S. H. and S. S.) introduced
the concept of a new class of undulators, a quasi-periodic array
of magnet poles, to discriminate the rational higher harmonics of
radiation that are harmful in some synchrotron experiments. In
this paper the analytical formula of the radiation spectrum from
the quasi-periodic undulator is reported.

I. Introduction

Ordinary undulators consist of a periodic array of magnet poles
of alternating polarity. The radiation emitted in each magnet
pole interferes with each other, producing enhanced emission at
a fundamental frequency and its harmonics. Since a mixture of
the harmonics degrades the ratio of signal to noise in many ex-
periments, the higher harmonics are required to be eliminated.
In the high energy region of x-rays above 30 keV, however, it is
practically difficult to exclusively pick up the fundamental radi-
ation. Hashimoto and Sasaki proposed a new undulator, which
comprises a quasi-periodic array of magnet poles [1], [2] and
will be called ”Quasi-periodic undulator” (hereafter, referred to
as QPU). No rational higher harmonics of the fundamental fre-
quency are contained in the radiation from the QPU. Here we
analytically formulate the QPU radiation spectrum.

In a normal planer periodic undulator (PU) an electron moves
sinusoidally in the horizontal plane. It takes the timeλU/(cβ̄z)

that the electron traverses one period of the undulatorλU , where
β̄z is the average longitudinal velocity. During this time the
light travels the distanceL = λU/β̄z along the undulator axis,
so that the light emitted by an electron at a top of the sinusoidal
motion precedes the one emitted at the next top by the phase
1φ = 2πω/ω1. Hereω is the angular frequency of the light, and
ω1 is the resonant frequency of the undulator radiation given by
ω1 = 2γ 2ωU/(1 + K 2/2) with the undulator angular frequency
ωU = 2πc/λU . Gathering the radiations from the individual
periods, one finds that the intensity is proportional to [3], [4], [5]
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whereN is the number of periods of the undulator. This implies
that the intensity of the undulator radiation is strengthened at
ω = nω1 with an integernand that the spectrum has the harmonic
structure.

The explicit formula of the radiation spectrum from the PU is
well-known and expressed by infinite series of Bessel functions
[6], [7], [8]. In the next section we briefly review the irrational
harmonic structure of the radiation spectrum from a QPU and
give the explicit expression.

II. Radiation Spectrum for a QPU
Themth quasi-periodic lattice point is represented as [1], [2],

[9]

ẑm = m − (tanα − 1) + (tanα − 1)

[
tanα

1 + tanα
m + 1

]
, (2)

where tanα is the tangent of the inclination angle of a 1D quasi-
lattice against a 2D square lattice. The symbol [· · ·] represents
the greatest integer operator. The first term on the right hand
side in Eq. (2) corresponds to a periodic component of spacing
between the lattice points, the second term represents the con-
stant translation of lattice points, which moves the initial lattice
point ẑ0 to the origin, and asm is increased the third term quasi-
periodically increases by(tanα−1) due to the irrational nature of
tanα. Hence the distance between any two consecutive positions
(ẑm − ẑm−1) takes a value of 1 or tanα, forming a quasi-periodic
array.

A basic magnetic structure for the planer QPU can be realized
by aligning positive and negative magnet poles alternately at the
1D quasi-lattice points designated by Eq. (2) [1], [2]. From
the symmetry of the 2D square lattice, where a 1D quasi-lattice
is embedded, we can restrict 0< tanα < 1 without loss of
generality. Thus we denotes the two distances between the quasi-
lattice points asd, d′(= d/ tanα > d). To realize a QPU, the
length of the magnet blockw should be shorter than the distance
d.

As in a regular PU we here assume that the magnetic field
By(z) of the transverse QPU withN ′ poles has the sinusoidal
dependence

By(z) =
N ′−1∑
m=0

B0 (−1)m Cos
[π

w
(z − zm)

]
, (3)

whereB0 is the peak magnetic field andzm(= d′ẑm) the center of
themth magnet region. The function Cos(α) is here defined to
take cos(α) for−π/2 ≤ α < π/2 and 0 otherwise. The magnetic
field distribution withw = d is shown in Fig. 1. For the sake of
later convenience we here define analogue of the wave number,
k0 = π/w, and the undulation parameter,K = (eB0)/(m0ck0),
in the QPU.

In estimating the phase interference in the radiation from the
QPU, we must sum up the phase differences of the individual
magnet poles instead of the periods in the PU. Then the function
that contains the phase interference of the QPU withN ′ magnet
poles is

Q`(ω) = 1

N ′

N ′−1∑
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exp
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i π
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, (4)

where

ω2 = w

d′
2γ 2ω0

1 + K 2 + (γ θ0)
2 , (5)
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Figure. 1. Magnetic field distribution along the axis of the quasi-
periodic undulator.

η = w

2d′
K 2

1 + K 2 + (γ θ0)
2 . (6)

In the exponent of Eq. (4) the termi π(ω/ω2)ẑm is the counterpart
of the phase difference in the PU 2i πm(ω/ω2). The factor 2 in the
phase of the PU reflects the fact that one period of a PU consists
of two magnet poles. Since in the free spaces between the magnet
regions the electron possesses the transverse velocity, the phase
of the electron against the light delays while the electron runs
through the free spaces. The second term in the exponent of Eq.
(4) containingη corresponds to this phase delay. The index` of
Q` represents the order of the Bessel expansion of the sinusoidal
phase motion in the magnet regions.

Since for eveǹ the second term in the exponent in Eq. (4) is an
integer multiple of 2π i and then vanishes in the exponentiation,
the summationQ`(ω) can be simplified as

Q`=even(ω) = 1

N ′

N ′−1∑
m=0

ei π ω
ω2

(ẑm−ηm)
, (7)

which represents the Fourier transform of the quasi-periodic lat-
tice except for the additional termηm. Following the description
of the quasi-crystal [9], we can derive the approximated expres-
sion ofQ`(ω). For largeN ′ approximation, Eq. (7) can be easily
rewritten as [9]

Q`=even(ω) =
∑
p,q

ei X pq/2 sin
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)
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δ
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where

kpq = 2π

(
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)/(
1 + tan2 α
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− η

)
, (9)

Xpq = 2πq − (tanα − 1) kpq. (10)

This implies that bright peaks occur at the discrete values ofkpq’s
where Xpq’s are small and that intense peak positions(p, q)

should be associated with the Fibonacci sequence [9]. Hence, in
general, there appears no rational higher harmonic in the radia-
tion spectrum from the QPU.

In the case of odd̀, the summationQ`(ω) is reduced to

Q`=odd(ω) = 1

N ′

N ′−1∑
m=0

ei π ω
ω2

(ẑm−ηm)−i πm
, (11)

which implies that it corresponds to the Fourier transform of
the quasi-lattice with positive and negative matters, since the
additional phase factor exp(−i πm) alternately changes the sign
asm increasing. Then the peak positionkpq is shifted by the
second term of Eq. (11) from the positions of` = even, and given
by

kpq =
[
2π

(
p+q

tanα

1 + tanα

)
−π

]/(
1 + tan2 α
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−η

)
. (12)

In both the cases the resonant frequency of the synchrotron radi-
ation from the QPUωpq is represented as

ωpq = kpq

π
ω2. (13)

It is emphasized that the resonant frequency of the radiation from
QPUωpq has the extraK dependence throughη in kpq in addition
to throughω2 while the one from a PU is a simple integer multiple
of ω1.

Evaluating the radiation intensity from one magnet pole, we
can derive the explicit form of the spectrum formula

d2I (ω)
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where, for an odd mode
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and for an even mode
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In the spectral formula (14)Hpq (ω/ω1) is the structural function
given by

Hpq (ω) =
[

sin
(
Xpq/2

)
Xpq/2

]2

δ

(
ω − kpq

π
ω2

)
. (19)

In Eqs. (15)-(18)

k̃pq = d′ [1 + K 2/2 + (γ θ0)
2
]

πw
[
1 + K 2 + (γ θ0)

2
] kpq, (20)

S(p)

` (x) =
∞∑

n=−∞
Jn (ξzx) J2n+`+p (ξxx) (21)

with

ξx = 2Kγ θ0 cosφ0

1 + K 2/2 + (γ θ0)
2 , (22)

ξz = K 2

4
[
1 + K 2/2 + (γ θ0)

2
] . (23)

In the form factors (15)-(18) the termsB andC, given by

B = 1 + K 2 + (γ θ0)
2[

1 + K 2 + (γ θ0)
2
]2 + (2Kγ θ0 cosφ0)

2
, (24)

C = 2Kγ θ0 cosφ0[
1 + K 2 + (γ θ0)

2
]2 + (2Kγ θ0 cosφ0)

2
, (25)

are understood as the contributions from the radiation in the free
spaces between the magnet poles in the QPU.

III. Concluding Remarks
We derived the analytical formula of the radiation from the

QPU (14) under the assumption that the magnetic field is given
by Eq. (3).

It is worth emphasizing that the intensity of the even modes
vanishes on axis as seen in the case of the PU. This is because
Gpq, consisting ofS(±1)

` for even` and C, vanishes on axis
(θ0 = 0). Furthermore, note that, although one infinite Bessel
seriesS(m)

` for some` corresponds to one peak in the radiation
spectrum of the PU, a peak intensity of the QPU comes from all
the even series or the odd series.

To confirm the validity of the analytical formula, we compare
it with the numerical computation of the radiation spectrum from
a QPU with the magnetic field given by Eq. (3). Figure. 2 shows
the radiation spectra of the QPU withK = 1.0 given by the
numerical and the analytical calculations. Here we takew = d
and tanα = 1/

√
5. In the numerical calculation we assume the

number of poles to be 100. The full circles in Figure. 2 represent
the bright peaks of the spectrum designated by the generalized
Fibonacci integers. Thus one is convinced that the analytical
formula for the radiation from the QPU correctly gives the peak
position in the spectrum and the peak intensity.
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Figure. 2. Radiation spectra from the quasi-periodic undulator
with K = 1.0. The solid curve indicates the numerically com-
puted spectrum and the dots correspond to the peaks given by
the analytical formula.
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