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     Free-electron laser (FEL) amplifiers have demonstrated
high efficiency and high output power for microwave
wavelengths.  However, using present technology, microwave
FEL amplifiers are not phase stable enough to be suitable for
driving linear accelerators, where several such amplifiers need
to be phase locked.  The growing wave's phase sensitivity to
the beam voltage in the small-signal regime is responsible for
the largest contribution to this phase instability.  We discuss
a scheme that reduces the phase sensitivity to the beam
voltage by operating off synchronism and matching the phase
variation resulting from the desynchronism to the phase
variation from the reduced plasma wavenumber as the beam
voltage changes.

I. INTRODUCTION

     Free-electron lasers (FELs) have demonstrated both high
beam-to-rf power extraction efficiencies (~30%) [1] and high
output power (on the order of gigawatts) [2], and have been
considered as candidates to drive high-frequency advanced
accelerators like those proposed for linear colliders [3].
However poor phase stability has been predicted and measured
for FELs [4,5].  Typical accelerator applications require rf
phase stability on the order of 5o of phase, and advanced
accelerator applications such as bunch compression [6] and
short-wavelength FELs require stability to 1o or less [7].
Phase noise in microwave FELs arises from fluctuations in
tube voltage, current, confining magnetic field strength, and
other tube parameters.  Typically, the largest effect is from
voltage fluctuations.  Electron beams for practical FELs used
as rf sources will have diode voltages of 1/2 to 1 MV with
voltage stabilities on the order of 1/4%.  Measured and
simulated FEL phase stability to date has been on the order of
a 20o to 40o shift per percent voltage fluctuation [5,8,9].
This level of phase stability does not satisfy advanced
accelerator requirements.

In a klystron, the phase of a cavity is completely
determined by the absolute phase of the harmonic current at
that location. If the beam energy is shifted slightly by δγ ,
we can expect that the output phase will shift by
δΦ = −(βeL / γ (γ + 1))(δγ / (γ − 1)) where L  is the total

device length and the electron propagation number
is βe = ω / βc , and where ω  is the frequency of operation and

β  is the beam axial velocity normalized to the speed of light.
For a 500 keV beam in a  half-meter-long 11.4 GHz klystron,
a 1/4% shift in the voltage will lead to about a 3o phase

shift.  Note that if the product ωL  is kept constant, tubes at
other frequencies will have the same phase shift for the same
voltage shift.  However, since the space-charge bunching
length is independent of operating frequency, the product ωL
will in general increase as the frequency is increased and we
can expect that a 20 GHz tube will have phase variations on
the order of 5o, and higher frequency tubes will have even
larger phase variations.  Lower frequency klystrons typically
have phase stability better than 1o [7].

The phase shift in an FEL due to the transit time effect is
the same as for a klystron.  However, the effect of the space-
charge wave and the transit time of the electron beam are not
separable in a FEL as they are in a klystron.  This will
introduce new physical effects, one of which is the possibility
of using fluctuations in the space-charge wave to counter
fluctuations in the beam's transit time through the device.

In this paper we will explicitly demonstrate that the
phase dependency on the space-charge wave can effectively
cancel the phase dependency on the beam's transit time factor
for the FEL interaction.  We will do this by analyzing the
dispersion relation for an axial FEL, which is used instead of
the conventional transverse FEL for simplicity.  We will also
present numerical solutions of the dispersion relation
exhibiting the phase-stable condition.

II. DISPERSION RELATION
FOR AN AXIAL FEL

Recently, an axial FEL interaction was proposed for the
generation of gigawatt microwave radiation [10].  In this
device, an annular electron beam interacts with the axial
electric field of a TM0m mode in a circular waveguide.  The
radius of this waveguide is periodically rippled which causes
the mode to radially expand and contract.  The ripple
amplitude is only a few percent of the average radius, and the
mode is able to adiabatically conform to the gradual change in
the waveguide radius.  The axial FEL interaction for a
synchronous particle is shown in Figure 1.  The annulus is
located at a radius corresponding to a zero of the axial electric
field of that mode in a waveguide with a radius equaling the
mean radius of the rippled waveguide.  When an electron is at
the axial position of the smallest waveguide radius the axial
electric field at the location of the electron opposes the
electron's motion.  As the electron travels to the region of
larger radius the rf slips by the electron.  When the electron is
at the location of the maximum waveguide radius one half of
a rf wavelength has slipped by, resulting in a sign change in
the mode's fields.  Additionally, the electron is experiencing
the electric field at a radius larger than the axial field zero
instead of a radius smaller.  This switch from one side of the
null of the axial electric field to the other provides another
sign change in the axial field at the location of the electron,
and the electric field is again opposing the electron's motion.
This interaction is equivalent to the interaction of a



transverse-coupling FEL except the rf field is wiggled instead
of the electrons to provide synchronism.

Figure 1:  Axial electric field orientations for a synchronous
particle when the particle reaches the centers of the ripples in an
axial FEL, in r-z geometry

If we assume that the growing rf mode components have

an e jωt−Γz  exponential behavior, this dispersion relation can
be derived [11] for the axial FEL:
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where the cold rf mode propagation constant is
β1 = ω / vphase , the gain parameter C  is proportional to the

beam current divided by γβ 3, all to the 1/3 power, and the
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where now rw  is the wall radius, rb  is the beam annulus
radius, I  is the beam current, IA  is about 17 kA, and χo  is
a slowly varying term close to unity that depends on rw  and

rb .  We can define the normalized gain δ  and the detuning
∆ by

Γ = jβ1 + jkw + δCβ1

βe = β1 + kw + ∆
       (2)

where kw  is the wiggler wavenumber, given by 2π  divided
by the wiggler period.  Eq. (1) now becomes

∆2 + 2 j∆δCβ1 − δCβ1( )2( (3)

− β1 + kw( )2 − k2 − 2 jδCβ1 β1 + kw( )( )β̂q
2 
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Now  δ  and thus the output phase can be make stable if
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for the case the derivative of the interaction strength with
respect to βe  vanishes.  Eq. (4) is satisfied by the conditions
(for a constant perveance gun):

∆ = −βe / γ

β̂q
2 = 2

3γ (γ + 1)(1 − ∆ / βe )

   .        (5)

This solution only makes sense for γ   on the order of 10 or
greater because of the typically narrow window of detunings
that lead to growing mode solutions.  However, we will next
show that the first equation in Eq. (5) is required for gain
stability, and a minor modification to the second equation
will lead to phase stability for small detunings.

Let us assume that Γ = jβ1 + jkw + δoCβ1 is a solution
of the dispersion relation, Eq. (1).  Now let us consider the
solution of the dispersion relation where ∆  is slightly shifted

(by δ ∆ ),  β̂q
2 is slightly shifted (by  δβ̂q

2 ), and C  is

slightly shifted (by  δC ), and where we denote the new

solution by Γ = jβ1 + jkw + δoCβ1 + δ1Cβ1.  Since the
solution to the growing mode has a negative real component
and lags behind the electron's phase velocity, we can write
δo = −a + jb , where both a  and b  are positive and typically

on the order of unity.  After solving for δ1 by performing a
first-order expansion we find
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as the condition for phase-stable operation.

III. NUMERICAL SOLUTIONS OF THE
DISPERSION RELATION SHOWING

 PHASE STABILITY

We can numerically find the growing root of the
dispersion relation, Eq. (1).  In this section we will do this
for a variety of beam energies, demonstrating the phase-stable
conditions found in the last section over a broad operating
range.

A. High energy, low gain
For the case of high energy and low gain, the solution

specified in Eq. (5) is valid if the interaction strength is
independent of beam energy.  For the case γ = 100,

βe = 300 m-1, and C = 0.03 , this solution is given by

∆ = −3 m-1 and βq
2 = 6.7(10−5) .  In Figure 2 we plot the



derivatives of the phase change per unit length and the
amplitude growth with respect to beam energy, respectively,

as calculated numerically from Eq. (1) for ∆ = −3 m-1 while

varying βq
2, and while assuming the interaction strength is

independent of beam energy and the beam has constant
perveance.  As predicted, both derivatives vanish at

βq
2 = 6.7(10−5) , which is an autostable operating point.

Figure 2:  Sensitivity of phase and gain to beam energy for low
gain, high energy case satisfying Eq. (5) as a function of space-
charge wavenumber.

Figure 3:  Sensitivity of phase to beam energy for medium gain
( C = 0.1), low energy ( γ = 2) case as a function of the space-

charge wavenumber, for a detuning ∆ = −50 m-1 .

B. Low energy, moderate gain
Now let us consider another constant perveance case with

γ = 2  at 13 GHz (so the beam propagation constant is about

300 m-1), an output power of about 1 GW, and with a device
length of about 1 m.  For these parameters the gain constant

C is on the order of 0.1.  For a detuning of ∆ = −50 m-1, Eq.
(6) predicts phase-stable operation at a space-charge wave

number of about 0.08.  In Figure 3 we have plotted the
derivative of the phase change per unit length with respect to
beam energy as a function of the space-charge wave number
numerically calculated for this detuning.  The calculated
growth rate is about 11 m-1, or about a factor of 2 per

wiggler period if the wiggle wave number kw = 100 m-1(a 6
cm wiggler period), and phase-stable operation is achieved
with a beam current of about 5 kA at nearly the predicted
space-charge wave number.

IV. CONCLUSION

We have examined the FEL dispersion relation in the
Raman regimes and shown that if the interaction strength is
independent of beam energy, there is a stable phase and gain
operating point.  We have additionally shown that even if the
interaction strength depends on the beam energy there is a
phase-stable operating point, which we then demonstrated
numerically.  It should be noted that this technique of
reducing the phase stability of an FEL is not possible with a
klystron, and that by proper design an FEL can have a phase
stability an order of magnitude greater (or more) than a
klystron.
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