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ABSTRACT These formulas are correct in the limit σ0  ™ 0, but are in
error by up to 40% for the typical design case of σ0  = 72˚.
Furthermore the smooth limit, by itself, does not provide

Many approximate solutions for matched beam
envelope functions with space charge have been
developed; they generally have errors of 2 - 10% for the
parameters of interest and cannot be reliably improved.
The new, systematic approach described here provides the
K-V envelope functions to arbitrarily high accuracy as a
power series in the quadrupole gradient.  A useful
simplification results from defining the sum and difference
of the envelope radii; S = (a+b)/2 varies only slightly with
distance z along the system axis, and D = (a-b)/2 contains
most of the envelope oscillations.  To solve the coupled
equations for S and D, the quadrupole strength K(z) is
turned on by replacing K with αK1 and letting α increase
continuously from 0 to 1.  It is found that S and D may be
expanded in even and odd powers of α, respectively.
Equations for the coefficients of powers of α are then
solved successively by integration in z.  The periodicity
conditions and tune integration close the calculation.
Simple low order results are typically accurate to 1% or
better.

formulas for σ0 , the maximum edge radius, or the
envelope slopes.  The evaluation of the latter quantities
requires a definite prescription for K(z) and treatment of
the associated envelope oscillations.  A new approach to
solving for matched envelope functions is described here.
Essentially, an expansion in powers of K2P4 is made for
various envelope quantities, and the low order non-trivial
formulas are typically accurate to about 1% or better.
Details are contained in an LBL report by the author(2).

II.  THE K-V ENVELOPE EQUATIONS
The x and y radii, a(z) and b(z), are assumed to

satisfy the coupled, non-linear envelope equations of
Kapchinskij and Vladimirskij:

d2a

dz2 = −K(z)a +
ε2

a3 +
2Q

a + b
,     (3)

d2b

dz2 = + K(z)b +
ε2

b3 +
2Q

a + b
.     (4)I.  INTRODUCTION

The matched (periodic) solution of the coupled
Kapchinskij-Vladimirskij (K-V) beam envelope equations
is used extensively in the design of quadrupole transport
systems.(1)  Exact results for a specified set of beam and
lattice parameters are readily obtained numerically.
However to perform scoping studies, scaling, cost
optimization, and to gain physical understanding, it is very
desirable to have simple analytical formulas for the
envelope functions.  The general problem may be stated as
follows.  For specified quadrupole strength K(z) with
period (P), beam edge emittance (ε), and beam perveance
(Q), find the matched envelope radii a(z) and b(z).  The
depressed phase advance per period or tune (σ) is then
determined from the mean of a-2, and the undepressed
phase advance (σ0) is determined in similar fashion in the
limit Q = 0.

Here the quadrupole strength K(z) is the ratio of the
transverse magnetic field gradient G(z) and particle
rigidity [Bρ] = βγmc/q.  The perveance is the
dimensionless constant proportional to current as defined
by Lawson:  Q=2qI[(βγ)3mc34πε0]-1, and the (un-
normalized) edge emittance ε = εx = εy is the occupied
(x, dx/dz) phase space area divided by π.

By assumption, K(z+P) = K(z) .  We also assume the
mean of K vanishes, and K is antisymmetric around z=0;
K(-z) = -K(z).  Denoting the half period length         L =
P/2, it follows that K(z) is also antisymmetric around z =
± L, ± 2L, ... .  No additional symmetry is assumed, so a
system of unsymmetrical quadrupole doublets is
accommodated by the general formulation.

The matched envelope radii exhibit the periodicity of
the lattice:  a(z+P) = a(z)    ,  b(z+P) = b(z) , and at mid-
drift points z = 0, ± L, ± 2L, ..., it is easily shown that
a = b     ,     da/dz = -db/dz .

The simplest rough design formulas are obtained by
assuming that the quadrupoles effectively act like a
confining harmonic well with frequency σ0/2π P and that
the envelope radii are approximated by their mean values
(  a ).  The perveance and emittance are then related to the
tunes, σ0 and σ (expressed in radians) by the “smooth
limit” formulas

We define the sum and difference of envelope radii:
S(z) = (a+b)/2,    D(z) = (a-b)/2  . From the symmetries
of a and b, it follows that S is symmetric and D is
antisymmetric around z = 0,   ± L, ± 2L, ... .  Hence, S´(0)
= S´(L) = 0 , D(0) = D(L) = 0.QP 2

a 2
=σ 0

2 −σ 2     ,   
σP

a 2
=σ      , (1,2)

Next we define the dimensionless envelope functions
s(z) and d(z):

S(z) = a 1 + s(z)( )  ,  D(z) = a  d(z) . (5a,b)

* This work was supported by the Director, Office of
Energy Research, Office of Fusion Energy, U.S. Dept. of
Energy, under Contract No. DE-AC03-76SF00098.

Denoting d/dz by a superscript prime, eqns (3) and (4)  are
added and subtracted to yield
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Inserting the expansions (10) - (13) into eqns (6) and
(7), expanding all expressions in powers of α, and equating
coefficients of each power of α, we get

d1´´ = -K1(z)  , (14)
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   .   (7) s2´´ = -K1d1 + A2cos2φ  + A2sin2φ    ,  (15)
d3´´ = -K1s2 - 3A2d1cos2φ    ,      (16)

and so forth.  We are now able to solve sequentially for d1,
s2, d3, s4, etc., by a straightforward program of integration.
The associated constants (An) are determined from
averages ( ′ ′ s n = 0 ) and can always be evaluated using
lower order s and d functions.  The first two An are

The functions s(z) and d(z) satisfy the same symmetry
conditions as S and D respectively.  Since the envelope
radii are periodic, we have the condition

Kd =
ε2

a 4
1

2

1

(1 + s + d)3
+

1

(1 + s − d)3

 

 
 

 

 
 +

Q

a 2
1

(1 + s)
  .  (8)

A2 = K1d1  ,    (17)

A4 = K1d1s2 − 3K1d1d1
2 cos2 φ  .  (18)In general, the rate of phase advance in the x or y

plane is the inverse of the respective β function (defined
by  βx = a2/ε).  A useful expression for the tune is: For most applications σ0 ≤ 90˚  , and it is found that

d5 <<.01  and s4 <<.001 , so they are not included in

further calculations here.  Typically s2 ≈.01  , and d3

increases from .01 to .05 as cos φ  ™ 1.  Although the
formalism developed so far is self-contained, it is of
interest to calculate the tunes σ and σ0 associated with the
matched envelopes.  The expansion of eqn (9) in powers of
α yields
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Recall that in the initial formulation of the matched
envelope calculation K(z), ε and Q are considered to be
specified and the matched radii are to be determined.
However in eqns (6) - (9), a  actually gets absorbed into
combinations with ε and Q; only K(z), ε/ a 2, and Q/a 2

appear.  Due to the matched envelope condition (8), these
three quantities cannot be specified independently.
Intuitively this is clear since, for example, if we set ε = 0
then the transport is space-charge-dominated and we would
expect the current density J ‚ Q/a 2 to be determined by
K(z) alone.
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The quantity ε / a 2  may be eliminated using eqn (10) to
obtain

σ2 = P2 cos2 φ K1d1α
2 + K1d1s2α

4[
          +3K1d1d1

2 2 − cos2 φ( )α4+...  
      .   (20)III.  METHOD OF SOLUTION

We turn on K(z) proportional to a continuous variable
(α) ;  K(z) = αK1(z)  , where K1(z) is the full quadrupole
strength function and α increases from 0 to 1.  For small α,
we except to recover the smooth limit formulas.  As α
increases the envelope radii become lumpy, i.e. d(z)
becomes appreciable.  As K(z) turns on it is also necessary
that ε/ a 2 and Q/a 2 turn on.  A natural dependence
suggested by the smooth limit formulas (1) is ε/ a 2 ~ α
and Q/a 2 ~ α2, so that σ0 ~ α and σ0/σ is independent of
α.  Due to the condition (8), it cannot be quite this simple;
the system would be overdetermined beyond the lowest
two orders in α.  A consistent, but not unique, turn-on
procedure is to hold the ratio (Qa 2/ε2) fixed and define the

angle (φ) : cos2 φ = 1 + Qa 2 / ε2( )−1
 .  Then convenient

forms ε/ a 2 and Q/a 2 are

Improved convergence is obtained for the expansion of
cos σ as compared with σ2.  Similarly, the expansion of

( a 2 sin σ )/Pε converges more rapidly than that of a 2σ / Pε
.  This behavior of expansions is not surprising because the
trigonometric functions of σ appear in the full period
transfer matrix.  We evaluate the expansions
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Q / a 2 = sin 2 φ A2α2 + A4α4+...( )     , (11)

where A2, A4, ... are determined from eqn (8).  The
consistent expansions for s(z) and d(z) are found to be of
the form

s(z) = s2(z)α2 + s4(z)α4 + ... , (12) The undepressed tune (σ0) is obtained from eqn (21) by
setting cos φ  equal to unity.  Note that d1 and s2 do not
depend on φ, so that terms of cos σ0 through (α4) may be
immediately written down:

d(z) = d1(z)α + d3(z)α3 + ... . (13)
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Equation (15) is also integrated twice, making use of

the condition s2 = 0 , to obtain the minimum and
maximum values
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becomes very cumbersome beyond the lowest non-trivial
order.  Some simplification is achieved by combining
formulas in such a way that some of the higher order terms
cancel.  A spectacular cancellation of terms may be
verified for the combination
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A double integration of eqn (19) gives the maximum
of d3(z):
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IV.  FLAT TOP QUADRUPOLE FIELDS
Using the averages k1d1 , d1

2 , and k1d1s2 , we get the

tune formulas from eqns (22) and (23):
A very useful set of design formulas is derived for the

simple FODO lattice with drifts of length (1-η)L centered
at z = 0, ±L, ±2L, ..., and flat-topped quadrupoles of
strength ±k and length ηL centered at z = ±L/2, —3L/2, ... .
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Equation (24), relating Q to other parameters, does not
depend on the specific form of K1(z) in the order of
approximation included here and is therefore not repeated
in this section.
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