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Abstract

The joint effect of an arbitrary sum resonance and a linear cou-
pling resonanceQy � Qx = 0 on stability of betatron oscilla-
tions in a circular accelerator is studied. The presence of linear
coupling is shown to result in splitting of the cluster of sum res-
onance straight-lines into a family of hyperbolic curves. The
analytic results obtained are verified by numerical simulations.

I. INTRODUCTION

At present, the design employed of SC dipoles for high energy
accelerators does not ensure the small enough values of the skew
quadrupole field errors, Refs.[1],[2]. This gradient brings about
the major contribution to linear coupling between horizontal (x)
and vertical (y) betatron oscillations.

The effect of this coupling on the motion has been studied
in many papers (refer, say, to Refs.[3]–[8]) of which we would
distinguish quite a rigorous and consistent Ref.[8]. These pa-
pers treat the problem in terms of normal oscillation modes and
the relevant tunesQ1;2, the latter being quite distinct from the
unperturbed betatron tunesQx;y. However, to analyze the joint
effect of linear coupling and magnetic nonlinearities, it might
be more convenient to employx; y-modes of the unperturbed
oscillations.

In frames of the first-order perturbation approach, linear cou-
pling shows itself up as an excitation of sum and difference res-
onancesQy � Qx = k. Being treated isolately from the other
resonances, the linear difference resonance is, by itself, not dan-
gerous for the motion of beam with equal betatronx- and y-
emittances. The total energy of 2-D oscillations being kept in-
tact, this resonance gives rise to energy exchange betweenx-
andy-directions. Nonetheless, such a resonance can result in
an unstable motion in the presence of an additional sum reso-
nance (not necessarily driven by the skew quadrupole) which
is far enough from the working point not to inflict any danger,
provided the `switched-off' linear difference resonance.

The common vision that the loss of stability occurs only on
the condition~n ~Q = k being satisfied seems to be not quite
the case. It does hold true for the isolated sum resonance,
given there exists only one such a resonant straight line in plane
fQx; Qyg near the working point. By a simple example of joint
action of an arbitraryn-th order sum resonance and a linear dif-
ference resonance, it would be shown here that there exists a
family of (n+1) hyperbolic curves in the betatron tune plane at
which the loss of stability is possible.

II. ANALYTIC RESULTS

A. Betatron Oscillations of the Reference Particle

Componentshx;y of the magnetic field imperfections are
expressed in terms of the longitudinal vector potentialAs :

hx = �@As=@y; hy = @As=@x,

As(x; y; s) =
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where�Hy;n(s);�Hx;n(s) are additions to the field introduced
by then-th order normal and skew nonlinearities, respectively,
taken at(x = r; y = 0); r is a reference radius.

Up to the first order in perturbation, equations of betatron mo-
tion of the on-momentum particle in such a field acquire the
canonical form, Ref.[9]:
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where� is an equation symbol for eitherx or y; R0 andR are
the average and curvature radii, respectively, of the reference
orbit in fieldH; � is a generalized azimuth which may be ex-
pressed by the longitudinal coordinates as� = s=R0; ��(�) is
beta-function and�� = Q�� + �� is unperturbed phase with a
periodic part��(�). Thus,

p
I� is the�-oscillation amplitude

normalized tor and taken at azimuth where�� = �max. The
operatorh: : :i denoting the averaging over� removes fast har-
monics.

By taking into account the periodic dependence ofD on~� =
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where~n = (nx; ny), nx;y; k are integers.
The resonant harmonics enterhDi as complex conjugated

pairs,f~n; kg andf�~n;�kg, which are responsible for excita-
tion of ~n~Q = k resonance. The infinite increase of the total
energyI = Ix + Iy is possible under the impact of the isolated
sum resonance~n with nx � ny > 0. Due to this reason, the
1-D resonances~n = (nx; 0) and~n = (0; ny) should rather be
treated as sum ones. Simplify expression for amplitudeD~n;k of
the resonant harmonic by retaining the contribution only from
the nonlinearity of minimal power allowed for the given order
of resonance. Then
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wheren = jnxj+ jnyj is the order of a resonance.
Let the cross-point~Q� of then-th order sum resonance with

the line of difference resonance~m~Q = p, ~m = (�1; 1) be re-
ferred to as then-th order cluster. No more than(n + 1) sum
resonances ofn-th order can cross such a node:~n = (n � j; j)

wherej = 0; : : : ; n. All these resonances can be driven by the
same(n� 1)-th power field nonlinearity.

The joint effect of a sum resonance~n and a difference res-
onance~m near ~Q� is described in terms of variablesf~I; ~�g
through the canonical Eqs.1 with Hamiltonian:
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where~w = ~��+~�; ~� = (~Q� ~Q�) is the working point detuning
from the cluster;nx;y � 0.

B. Effect of Isolated Difference Resonance~m

Study of motion in the vicinity of the isolated difference re-
sonance~m shows that any particle has itsIx;y varying harmon-

ically with a frequency 2! = 2

q
jP~m;pj2 + (~m~�=2)2. Fre-

quency! does not depend on oscillation phase and amplitude,
which allows one to transfer to new variablesI1;2 and�1;2, the
latter being the integrals of motion,� p
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Transformation by Eq.3 does not change expression for the
total energyI = Ix + Iy = I1 + I2.

C. Effect of Difference Resonance and Sum Resonance

Whenever simultaneous effect of a sum,~n, and a difference,
~m, resonances in the neighborhood of then-th order cluster is
taken into account, the quantitiesI1;2; �1;2 would no longer be
integrals of motion. Still, the use of these variables as indepen-
dent ones allows us to transfer from Hamiltonian, Eq.2, to a new
one,K, in terms of which the resonance~m would be formally
absent. According to Eqs.1, 3, on being put down in terms of
new variables, the Eqs. of motion would retain their canonical
nature:
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Any of K~n;j can result in an infinite increase of the total energy
of oscillations, given certain resonant conditions are fulfilled. In
absence of a difference resonance~m there would have been a
single straight line~n~� = 0 in the planef�x; �yg. However, on
this resonance being taken into account, a set of(n+1) resonant
curves"n;j = 0 emerge. These curves are given parametrically
through Eqs. to follow,�
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Depending solely on the cluster ordern, these curves form
a family of hyperboles with asymptotes being given by
�y + �x + j�y � �xj(1� 2j=n) = 0. It can be easily found that
the asymptotes coincide with resonant lines of all then-th order
sum resonances which may cross the cluster in question. Thus,
the `switching-on' of the difference resonance yields splitting of
the sum resonance's cluster.

Figs.1a,b, where�� designates��=jP~m;pj, show the splitting
of sum resonances~n = (1; 1) and~n = (3; 0) driven by a skew
field gradient and a normal sextupole, respectively. The width
of split resonant lines is chosen as proportional to�~n;j.

III. COMPUTER SIMULATION
Assume the field imperfections that excite resonances~n and

~m under study be localized at the quadrupole centers of allN

cells of an accelerator. Suppose, that at these centers the fol-
lowing conditions are met:�x;foc = �y;def = �max, �x;def =

�y;foc = �min , betatron phase advance between centers of adja-
cent F- and D-quads being the same. Take the following parame-
ter values appropriate to the UNK case:N = 160, r = 35 mm,
�max = 152 m, �min = 32 m. Distribute field imperfections
along the lattice so as to excite in the vicinity of the working
point only a sum resonance~n and a linear difference resonance
~m with argP~n;k = 0 andargP~m;p = 0.

A. Joint Effect of~n = (1; 1) and ~m = (�1; 1)

Effect of these two resonances treated in variablesI1;2; �1;2
results in emerging of three split resonant lines in planef�x; �yg,
see Fig.1a. Take the split resonancej = 2 and treat it separately
from the others. In such a case

K ' K~n;2 = �I1fjP~n;kj � sin 2�g cos(2"2;2� + 2�1) (5)

and, thus,I2 and �2 are kept intact, i.e.I2(�) = I2(0) and
�2(�) = �2(0). Put the working point exactly at the resonant



curve"2;2(�) = 0. Then Eqs.4, 5 with�1(0) = ��=4 yield
�1(�) = �1(0) and total energy atI2(0) = 0 varying in accor-
dance with

I(�) = I(0) expf�2jP~n;kj sin 2� � �g (6)

For the preset values ofjP~n;kj andjP~m;pj the skew gradient in
l-th period is given by�
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wheret = 1=2 and t = 1 for F- and D-quads, respectively.
Fig.2 shows the values ofI(�) calculated via Eq.6, and via the
numerical tracking during a hundred of turns withjP~n;kj =

0:01; jP~m;pj = 0:1; I(0) = 1:0 for k = 73, p = 0, � = 80�, i.e.
�x = 0:56713; �y = 0:01763. The agreement of results is fairly
well.

B. Joint Effect of~n = (3; 0) and ~m = (�1; 1)

As in the previous example, for isolated split resonancej = 3

one has

K ' K~n;3 = I
3=2
1

fjP~n;kj � cos3�g cos(3"3;3(�) � � + 3�1)

Herefrom, I2(�) = I2(0); �2(�) = �2(0), and, given the
position of the working point exactly at the resonance line
"3;3(�) = 0 with initial values �1(0) = ��=6, one gets
�1(�) = const, while the expression for the total energy of os-
cillations atI2(0) = 0 acquires the form of

I(�) = I(0) � f1� 3
p
I0jP~n;kj cos3� � �g�2 (8)

For the preset values ofjP~n;kj andjP~m;pj the distribution of the
skew gradient is still given by Eq.7, provided a single differ-
ence resonance~m is excited, while the distribution of quadratic
nonlinearity acquires the form of�
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Fig.2b shows the values of the total energyI(�) calculated
with Eq.8 and numerical tracking results atjP~n;kj = 0:01,
jP~m;pj = 0:1, I(0) = 0:33 for k = 110, p = 0 � = 80�, i.e.
�x = 0:56713; �y = 0:01763. The quantitative disagreement
of theory against the numerical results can be accounted for by
the second-order effect introduced by the quadratic nonlinearity
which were omitted in the analytical treatment. Nevertheless, at
least the qualitative agreement is still satisfactory.

IV. CONCLUSION
The presence of linear difference resonance changes the loca-

tion and shape of resonant lines in plane of unperturbed betatron
tunes. Namely, the cluster of sum resonances is split into family
of hyperbolic resonant curves. These split resonances are capa-
ble of increasing the total energy of oscillations and, thus, can
decrease the dynamic aperture, which has been found in Ref.[8].
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Figure 1. Splitting of sum resonances:~n = (1; 1)(a); ~n =

(3; 0)(b)

Figure 2. Comparison of theory (—) against tracking (�) for
~n = (1; 1)(a) and~n = (3; 0)(b)


