Broadband Impedance of Azimuthally Symmetric Devices in RHIC*

Vibha Mane
Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

The interaction between the beam and its environment leads to beam instabilities, and is characterized by coupling impedance. The longitudinal coupling impedance of some RHIC devices with azimuthal symmetry such as bellows, pipe transition, gate valve and collimator have been calculated numerically using the time domain code TBCI [1]. The objective is to keep the broadband impedance below a threshold so that it satisfies the microwave stability criteria [2]; and make sure there is no contribution to narrowband impedance from any of these structures.

I. DETERMINING COUPLING IMPEDANCE

Let \(W(t) \) is the wakepotential of a \(\delta \) function charge. The coupling impedance is given by [3]

\[
Z(\omega) = -j \int dt W(t) e^{-j\omega t}
\]

The broadband impedance has been calculated in time domain, as the excited wakefields decay in a short time. The calculations are done for a Gaussian charge distribution traversing a cavity with \(\beta = 1 \), perfectly conducting walls and monopole mode \((m=0) \). The wakepotential is obtained as a function of distance behind the leading charge. The impedance is given by the Fourier Transform of the wakepotential divided by the Fourier Transform of the charge distribution.

II. IMPEDANCE OF RHIC DEVICES

In RHIC, there is transition in pipe radius from 3.5 cm in the cold region to 6 cm in the warm region. The cutoff frequency of the 3.5 cm pipe is 3.3 GHz and that of the 6 cm pipe is 1.9 GHz. There are bellows in the cold and the warm regions and gate valves in the warm region. The results of numerical calculations, for pipe transitions, gate valves, bellows and a circular collimator are given below. The \(\sigma \) of the Gaussian pulse is 5 mm for the bellows and collimator, and 4 cm for the pipe transition and gate valve. \(\sigma = 10\Delta z \) for all the calculations. The collimator calculation was also verified for \(\sigma = 20\Delta z \). The results are valid up to a frequency of \(c/(2\sigma) \)

A. Pipe Transition

The pipe changes radius from 3.5 cm to 6 cm over a length of 5 cm. Figure 1 gives a plot of the wakepotential and impedance. The impedance has resistive and inductive components at low frequencies. The inductance is \(1.24 \times 10^{-3} \) henry. The resistance is 31 ohm. There is a sharp jump near 1.9 GHz, the \(TM_{01} \) mode of the 6 cm pipe. Above 1.9 GHz higher order modes of the 6 cm pipe give broad impedance as energy is radiated into the pipe.

B. Gate Valve

The gate valve is a rectangular cavity and is approximated by a cylindrical cavity of the same volume. The pipe radius is 6 cm, cavity radius is 9.9 cm and the length of the cavity is 4.2 cm. Figure 2 gives a plot of the wakepotential and impedance. It shows one resonance below cutoff at 1.38 GHz with infinite \(R \) and \(Q \) as perfectly conducting walls are assumed. The \(Q \) will be finite when the finite conductivity of

* Work supported by the U.S. Department of Energy

0-7803-1203-1/93$03.00 © 1993 IEEE
steel is taken into account. The calculation was verified in frequency domain with Superfish, giving a mode at 1.37 GHz. The gate valves will be shielded, in order to avoid coupled bunch instabilities.

The gate valves will be shielded, in order to avoid coupled

bunch instabilities.

\[E_{s} = E_{x} \]

\[Z(\omega) = \frac{R}{1 + iQ \left(\frac{\omega - \omega_{r}}{\omega_{r}} \right)} \]

where \(R \) is the shunt impedance, \(Q \) is the quality factor and \(\omega_{r} \) is the resonance frequency.

Figure 2 shows wakepotential and impedance of 3.5 cm bellows with \(\Delta = 1 \) cm, \(l = 15 \) cm and \(N = 30 \). There is a resonance at 4.7 GHz with \(R = 820 \), \(Q = 7 \) and \(R/Q = 121 \). As the depth \(\Delta \) is decreased to 0.5 cm, the resonance frequency increases to 7 GHz with \(R = 360 \), \(Q = 3.2 \) and \(R/Q = 112 \).

\[f_{r} = \frac{1.69}{2\pi} \left(\frac{c}{\Delta} \right) \left(\frac{\Delta}{b} \right)^{0.43} \]

For the 3.5 cm bellows with \(\Delta = 1 \) cm, the resonance at 4.7 GHz is above the pipe cutoff of 3.3 GHz. If \(\Delta \) is increased to say 1.5 cm, there will be resonance and very large impedance around 3 GHz. Therefore \(\Delta \) should be kept below 1 cm.

The 6 cm bellows with \(\Delta = 1 \) cm, \(l = 15 \) cm and \(N = 30 \) show resonance at 3.6 GHz, with \(Q = 2.5 \) and \(R/Q = 170 \). The resonance frequency is above the cutoff frequency. Therefore for the 6 cm bellows as well, \(\Delta \) should be kept below 1 cm.

The following empirical relation satisfied by the resonance frequency agrees with that in [4].

\[f_{r} = \frac{1.69}{2\pi} \left(\frac{c}{\Delta} \right) \left(\frac{\Delta}{b} \right)^{0.43} \]

Figure 3 shows wakepotential and impedance of 3.5 cm bellows with \(\Delta = 1 \) cm, \(l = 15 \) cm and \(N = 30 \). There is a resonance at 4.7 GHz with \(R = 820 \), \(Q = 7 \) and \(R/Q = 121 \). As the depth \(\Delta \) is decreased to 0.5 cm, the resonance frequency increases to 7 GHz with \(R = 360 \), \(Q = 3.2 \) and \(R/Q = 112 \).

\[f_{r} = \frac{1.69}{2\pi} \left(\frac{c}{\Delta} \right) \left(\frac{\Delta}{b} \right)^{0.43} \]

The 6 cm bellows with \(\Delta = 1 \) cm, \(l = 15 \) cm and \(N = 30 \) show resonance at 3.6 GHz, with \(Q = 2.5 \) and \(R/Q = 170 \). The resonance frequency is above the cutoff frequency. Therefore for the 6 cm bellows as well, \(\Delta \) should be kept below 1 cm.

The following empirical relation satisfied by the resonance frequency agrees with that in [4].

\[f_{r} = \frac{1.69}{2\pi} \left(\frac{c}{\Delta} \right) \left(\frac{\Delta}{b} \right)^{0.43} \]
III. CONCLUSION

In order to satisfy the microwave stability criteria, the broadband impedance should be below a threshold, up to 3.3 GHz. Of the above mentioned structures, the largest contribution to broadband impedance, comes from the bellows. In addition beam position monitors, wall resistance and injection and extraction kickers also contribute to the broadband impedance. The kickers would also have resonances which have to be determined.

IV. REFERENCES