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Abstract and Introduction 
The 400 MeV storage ring Euterpe[l] is under con- 

struction. A quarter wave cavity (45 MHz, 50 kV) will 
accelerate the electrons. Due to space limitations the cav- 
ity length should not exceed 0.5 m. Therefore three special 
geometries are considered which have an ‘electrical length’ 
several times the physical length of the cavity. The first 
employs radial transmission line folding, the second lon- 
gitudinal folding and the third capacitive loading of the 
transmission line. Transmission line theory is used to pre- 
dict the cavity properties. Good agreement is found with 
SUPERFISH calculations. The capacitive loading option 
is superior considering its simplicity of construction and 
high shunt impedance. An LC equivalent circuit is used 
to model the impedance matching w.r.t. the rf generator. 
Results are in good agreement with measurements on a 
scale 1:l cold model. 

I. RADIAL FOLDING 

The phase velocity of a voltage wave on a transmis- 
sion line is v = l/m, where L and C are the inductance 
and capacitance per unit length respectively. To lower the 
effective wavelength one may increase L or C. Fig. la 
shows a cavity derived from a coaxial line but with C in- 
creased substantially by the presence of disks connected 
to the inner and outer conductors. One cavity cell can be 
represented by a series inductance AL and a shunt capac- 
itance AC. The inductance AL = L1 + L2 + LJ is simply 
the contribution of three sections of coaxial transmission 
line as indicated in Fig. 2a. The capacitance AC can be 
approximated by seven contributions. Two of these are 
usual coaxial line contributions. The third is the capaci- 
tance between two disks. The remaining four are due to 
the fringing fields at the corners of a disk. Formulas as col- 
lected by van Genderen et.a1.[2] were used to approximate 
these fringing capacitances. The total cavity is modrlled 
by a series circuit of N separate cells as depicted in Fig. 
2b. There are N possible modes of which the ground mode 
is the desired accelerating mode. Its frequency is given by 
f w 1/(4Ndm). L osses are taken into account by 
the resistance AR which is calculated analytically by inte- 
grating the wall material specific resistance over the sur- 
face, assuming a constant current in one cell. The shunt 
impedance and the quality factor can then be expressed 
as 
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As an example we designed a 10 cell strurture at 75 MHz, 
with an overall length of 0.25 m and an out,er diameter of 
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Figure 1: Three types of X/4 transmission line cavities a) 

employing radial folding, b) employing longitudinal fold- 
ing, c) employing capacitive loading. 
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Figure 2: a) The capacitances and inductances in one cell 
of a cavity employing radial folding b) equivalent circuit 
used to model a cavity with radial folding c) equivalent 
circuit used to model impedance matching. 

0.25 m. The analytical predictions (f = 76.4 MHz, R,h =I: 
61.2 kQ, Q = 1810) corn are very well with SUPERFTSH p 
results (f = 75.6 MHz, R,h = 61.9 kR, Q = 1880). 

II. LONGTTUDINAL FOLDING 

A considerable improvement in shunt impedance is ob- 
tained with the cavity depicted in Fig. lb. This cavity 
consists of two coaxial layers connected by a return sec- 
tion. Therefore its physical 1engt.h will approximately be 
half the electrical length. Further shortening is possible 
by adding more coaxial layers. The voltages and currents 
in two different points on a transmission line are related 
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Figure 3: Comparison between analytical and SUPER- 
FISH results for a cavity employing longitudinal trans- 
mission line folding. 

by the matrix equation 

( ‘;>,= ( $kkx -E;fxkx) ( :>, > (2) 
where z is the distance between the points, Z is the line 
impedance and k = w/c is the propagation constant. The 
return section can be modelled by a series inductance L 
and a shunt capacitance C which are determined similarly 
as in the previous section. The voltages and currents at 
the section input and output are related by 

(g&=( l -j”zL )( ‘;‘>i, * C3) -jwC l-w LC 

With Eqs. (2,3) we can transfer the vector (V, 1) from 
the shorting plate to the accelerating gap. The resonance 
condition is obtained by putting the right/under element 
of the overall transfer matrix equal to zero. As a special 
case we consider a cavity consisting of two layers with 
equal impedances 21 = Zz = Z. In the approximation 
that wL/Z << 1 and wCZ << 1 we obtain for the cavity 
lennt h 

I=: I-:(% 
[ 

+wCZ) . 1 
The shunt impedance R,h and quality factor Q are calcu- 
lated similarly as in the previous section. For simplicity 
we ignore the influence of the return section on the current 
profile in the second layer. Then we find 

R sh = 

Q = 

(~o/wo) ln2(n/r2> 
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where 6 is the skindepth and p is the specific resistance of 
the wall material. As an example we compare in Fig. 3 
the analytical results with SUPERFlSH results. The cav- 
ity accelerating gap was 3 cm and the return section gap 
5 cm. The capacitance C=3.6 pF was calculated with the 
numerical program RELAX3D. As can be seen, there is 
good agreement between both results. A further improve- 
ment of the analytical results is obtained if the influence 
of the return section on the current profile in the inner 
coaxial layer is taken into account (curves c). 

III. CAPACITIVE LOADING 

The construction of the previous cavity becomes 
rather complicated because more than two coaxial layers 
are needed to reduce its length to 0.5 m. A simpler con- 
struction is achieved with the cavity depicted in Fig. lc. 
This can be seen as a coaxial transmission line terminated 
with a capacitance. The current and voltage profiles on 
the coaxial line are determined by the matrix equation Eq. 
(2). The capacitive loading is taken into account with a 
matrix as in Eq. (3) but with L put to zero. The resonance 
condition now becomes 

1 
tan kl = - 

wcz ’ (6) 

where Z = &&ln(rz/rr)/21r is the line impedance, I 
is the length of the coaxial line, ri and rz are the inner 
and outer radii of the coaxial line and C is the loading 
capacitance. In good approximat,ion this capacitance is 
C = 7rccrg/d, where d is the accelerating gap. For this 
case the analytical shunt impedance and Q-value are 

- 47r6 Z2 sin2 kl tt - ah = 
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In Fig. 4 the analytical results are compared with SU- 
PERFISH results for a cavity with ri=2.5 cm, r-z=15 cm 
and d=l cm. Once more there is quite good agreement. 
For the proposed cavity, a shunt impedance of 580 kfl and 
a Q-value of 6600 can be achieved with a cavity length of 
45 cm and at a frequency of 45 MHz. For a gap voltage of 
50 kV, the required rf power would be 4.3 kW. 

IV. IMPEDANCE MATCHING 

Assuming inductive coupling, the complete rf system 
can be modelled wit,11 the equivalent circuit given in Fig. 
2c. The rf source is represented as an ideal rf voltage sup- 
ply VO in series with the characteristic impedance & of 
the transmission line feeding power to the cavity. The 
inductive coupling is represented by the mutual induc- 
tance M = km where k is the coupling constant 
and L1 is the induct,ance of the coupling loop. The se- 
cundary circuit represents the cavity. Its angular reso- 
nance frequency and Q-value are given by wc = l/a, 
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Figure 4: Comparison between analytical and SUPER- 
FISH results for a cavity employing capacitive loading of 
the transmission line. 

Q = (l/R,)fl. Fu th r er, we choose the current 10 
to represent the shorting plate current. Then the shunt 
impedance is R,h = 2Zf/R,, where Zt = Vgop/Io is the 
‘transfer impedance’ from the shorting plate to the accel- 
erating gap. The impedance of the cavity as seen from the 
transmission line is 

W2M2 

‘pr = iwL1 + R,(l + 2jQa) ) 

with 6 = (w - wc)/wc. In the complex plane this 
impedance is a circle with radius w2M2/2R,. The voltage 
reflection coefficient F as measured on the transmission 
line feeding the rf power is given by F = (Z,, - Ro)/(Z,, + 
Ro). The requirements for zero reflection can be written 
as 

WLl 6=- 
2QRo ’ 

iv=* (l+(k$j2)1’2 . (9) 

The first condition can simply be satisfied if the cavity is 
detunable. The second condition can be satisfied for ex- 
ample if the loop is rotatable such that the induction A/i 
can be varied from zero to a maximum value. This maxi- 
mum must be larger than the r.h.s. of the second of Eqs. 
(9). In order to verify the above theoretical predictions, 
a cold copper model was built of a 2-layer coaxial cav- 
ity employing longitudinal transmission line folding. The 
physical length of this cavity was 1=86.3 cm and its inner, 
middle and outer radii rl=2.5 cm, rz=5.4 cm and rz=12.2 
cm, In table 1 we compare the analytical and SUPERFISH 
predictions of the resonance frequency fc, quality factor Q 
and shunt impedance h?,h with the measured results. Two 
different loops were used to couple the rf signal int,o t,he 
cavity. Fig. 5 shows the primary impedance Z,, as mea- 
sured with a vector impedance meter (Hewlett Packard 

[ measured 43.8 4217 579 1 

Table 1: Calculated and measured properties of a cold 
cavity model 
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Figure 5: Cold model cavity impedance as 
measured on /he input transmission line. 

4815A). The smaller circle in Fig. 5 corresponds with the 
smallest of the two loops (area 11 cm2 compared to 15 
cm2 for the larger loop), which also was made of a thicker 
wire in order to lower its inductance. For both loops, per- 
fect matching to RO = 50 s2 is possible but the larger loop 
needs a rotation over approximat,ely 35 degrees. 
The measured shunt impedance in table 1 was deduced 
from the radius pe of one of the circles in Fig. 5. This 
radius is related to R,h by 

with Z, x 48 fI for the model cavity. If the area A of the 
loop is not too large then the mut,ual induction M can be 
approximated as - 

hf = foA 1, -- _ . (111 
2nr lo ’ 

\ I 

where r is the radial position of the loop and Z, is the 
circuit current at t.he coupling position. For the measure- 
ment in Fig. 5 the coupling loop was located close to the 
shorting plate so that I, x 10. From Eqs. (10) and (11) 
the shunt impedance is easily estimated. 
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