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ABSTRACT BOUNDARY-INTEGRAL EQUATIONS 

A 3-dimensional boundary-integral method has been 
developed for rf cavity mode analysis. A frequency- 
dependent, homogeneous linear matrix equation is generated 
from a variant of the magnetic field integral equation (MFIE) 
where the domain of integration is a closed surface specifying 
the rf envelope of the cavity. Frequencies at which the MFIE 
has non-zero solutions are mode frequencies of the cavity, and 
the solutions are the corresponding surface magnetic field 
distributions. The MFIE can then be used to calculate the 
electric and magnetic field at any other point inside the cavity. 
Forward iteration is used to find the largest complex 
eigenvalue of the matrix at a specific frequency. This 
eigenvalue is 1 when the frequency corresponds to a cavity rf 
resonance. The matrix equivalent of the MFIE is produced by 
approximating the cavity surface by a set of perfectly 
conducting’ surface elements, and assuming that the surface 
magnetic field has constant amplitude on each element. The 
method can handle cavities with complex symmetries, and be 
easily integrated with finite-element heat-transfer and stress 
analysis codes. 

Although Maxwell’s equations are usually posed as a set 
of coupled differential equations, many alternative, equivalent 
sets of integral equations can be derived. One useful integral 
equation’ for harmonically varying fields with angular 
frequency w is: 

H(d) = 2& (J x Vc$)dv 
I (1) 

+ & [iwE(nxE)q5-(nxH)xV(b-(n l H)Vr$]du 
I 

where 

4= 
eikir’-rl 

1 d -rl ’ 
(2) 

INTRODUCTION 

E and H are the electric and magnetic fields, S is any surface 
enclosing a medium with volume V, dielectric constant E, 
internal current distribution J and propagation constant k, and 
n denotes an inward-facing unit vector normal to the surface. 
If S specifies a cavity with a perfectly conducting surface 
enclosing a volume with no internal current distribution (i.e., 
J = 0), then (1) simplifies to: 

Computer codes capable of calculating the full 3- 
dimensional electromagnetic field distributions are now 
commonly used for designing rf cavities for accelerators. 
However, most of these codes need large computational 
resources to compute sufficiently detailed distributions for 
further mechanical engineering analysis of cavities. 
Furthermore, the mesh often used by these codes is not 
compatible with finite-element meshes commonly used in 
commercial thermal-stress analysis codes used in the 
mechanical design. Past work at AECL in the mechanical 
design of high-power rf cavities for a variety of applications 
showed the desirability of a technique to compute the rf field 
distribution over the cavity surface on the same surface mesh 
used in mechanical thermal-stress analysis. This paper 
presents such a technique that uses a boundary-integral method 
to compute the surface rf magnetic field distribution in cavities 
filled with a homogeneous medium. A similar approach using 
a different boundary-integral relation has been developed at 
the University of Pavia.’ In addition to being particularly 
convenient for coupled rf-mechanical design problems. these 
techniques usually require considerably less computational 
effort. 

H(r’) = --.& n x H(r) XV+& 
I 

for all r/ , r on the surface. The simplicity of (3) arises since 
only n x H, the component of H transverse to the surface, is 
non-zero on a perfect conductor. 

This equation is a variation of the magnetic field integral 
equation3 (MFIE) commonly used for the analysis of antennas 
of arbitrary shape. Equation (3) is a homogeneous Fredholm 
integral equation,4 which has non-zero solutions for H only at 
discrete values of w where the equation is said to be singular. 
The frequencies where (3) becomes singular are the cavity 
resonance frequencies, and the corresponding solutions, H, are 
the resonance field distributions. 

NUMERICAL SOLUTION OF THE hlFJE 

Equation (3) is transformed into a matrix equation using 
standard techniques in finite-element analysis.” in this case 
using the collocation technique with pulse basis functions. 
The surface is approximated by a set of 4-node quadrilateral 
elements with the tangential rf magnetic field assumed to be 
constant within each element. The collocation points are the 
geometric centres of each element. This results in two 
complex degrees of freedom for each element. 

(3) 
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A constant, purely tangential, rf magnetic field is assumed 
over each surface element. An element basis is defined for 

each element i, where ni and nf are orthogonal unit vectors 

tangential to the element and n, is a unit vector normal to the 
element. Since the four nodes defining a surface element are 
not constrained to lie in a plane, the unit vector n, is defined 
to be parallel to the cross product of vectors joining opposite 

comers of the element. The other two unit vectors, n: and 

n;, are then defined to be orthogonal to each other and to n i. 
Equation (3) then becomes 

+ A f; Hi” ) i=l 
hl 

+ Ai2;Hi2 , 
i=l 

(4) 

H = K(k)H , (9) 

where the equality only holds, for non-zero H, at values of k 
corresponding to cavity resonant modes. 

These mode frequencies are found by the following 
method. Equation (9) is generalized to be a standard matrix 
eigenvalue problem with k-dependent eigenvalues: 

h(k)H = K(k)H. (10) 

Since K is a non-symmetric complex matrix, all X are 
generally complex as well. The eigenvalues of (IO) are 
searched while varying k for values meeting the conditions 

!l?(X(k,)) = 1, * 3(A(k,,)) = 0 (11) 

where 

H = H’n’ + H*n’. 
when there is a resonant mode with k = k,“. The 

(5) corresponding eigenvector is the rf magnetic field distribution 
r 

The boundary-integral method is used to calculate the term 
+I.,, F,.., -,t,,,.. 

s in tor the mode. 

lllcj ,“U, IIIac‘ILcja In practice, when searching for the lowest frequency 

Ai!; = n; l 

I, 

mode, the eigenvalue of (10) that will satisfy (11) is usually 
pix n; xvqqr-r;)du, 

the eigenvalue with largest magnitude. In this case, direct 
iteration6 is a convenient technique to find X(k). Frequently, 

A,l; = n; . s, sni x n; xVd(r-rj) dn , variants of forward iteration can be used to find a significant 

(fJ) 
number of low-frequency modes. 

A;; = n; l 

I, 

s n, x n: xVQ(r-rj)da , RIGHT-CIRCULAR CYLINDER EXAMPLE 

Aif, = n; . I, sni x nf x Vg (r-r;) dn . 

Each surface integration uses l-point integration for 
distant elements, and 4-point Gaussian integration for nearby 
elements. The transition between l-point and 4-point 
integration occurs when the distance between collocation 
points exceeds four times the average dimension of the 
element. The results are very insensitive to the exact 
threshold. 

Any symmetry that exists in the problem may be 
incorporated in the surface integration by extending the 
integral in (6) over all elements that map into element i by 
symmetry while performing appropriate transformations of the 
rf magnetic field, H,. Possible transformations include 
rotation, and symmetry or anti-symmetry under reflection. 

Matrices A”, A”, A” and A” may be combined into a 
single 2N-by-2N matrix: 

The lowest frequency rf modes of a right-circular cylinder 
with 100 mm radius and 200 mm height have been found 
using the boundary-integral method. The symmetry in the 
problem permits modelling of one octant of the cavity. Only 
103 surface quadrilateral elements are used. Unlike most 
finite-element meshes, a connected mesh is not required for 
this simple implementation of the boundary-integral method. 
which permits more flexibility in mesh generation. 

Figure 1 shows the distribution of eigenvalues of (10) for 
a frequency of 1150 MHz. A comparison of several low- 
order mode frequencies for this cavity computed using this 
boundary-integral-method mesh, to frequencies calculated from 
exact analytic expressions, 7 is shown in Table I. Figures 2 
and 3 show the rf surface magnetic field distribution for the 
two lowest frequency modes. 

K= (7) 

and the two X-vectors K’ and fI’ may be combinrd into a 
single vector of length 2N: 

The result is an approximation of 13) in the form: 

The boundary-integral calculations were performd on a 
microcomputer using a 25 MHz Intel 386SL microprocessor 
with a 387 numeric co-processor. The time to calculate the 
matrix K for a specified frequency was -IS seconds; 50 direct 
iterations, taking 35 seconds, were sufticient to converge on 
the maximum eigrnvalue. Typically, three to four evaiuations 
of K at different frequencies are requir4 to tind each rcxonant 
mode. It is not necessary, although often convenient, to find 
the mode frrquencizs in inctwsing order. 
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SUMMARY 

A new approach for analyzing 3-dimensional rf resonant 
modes using a boundary-integral technique has been presented. 
The technique was used to compute the several rf mode 
frequencies and field distributions for a right-circular cylinder. 
The technique is being applied to several complex rf cavities 
for particle accelerators. 
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Table I RF mode frequencies of a cylindrical cavity 100 mm 
high and 200 mm in diameter 

Resonant 
htode 

TM010 1147.43 1152.23 

TElll 1737.42 1735.30 

TM110 1828.24 1833.90 

TM01 1 1887.72 1889.36 

TE21 I 2090.59 2089.00 

TEOl I 2364.18 2363. IO 

TM111 2364.18 2368.52 

TM210 2150.38 2457.10 

TE311 2503.0 I 2503.46 

1 .s 

i 

hagmary 

. -. 
k qure 1. Distribution of eigenvalues for a nght~ 
circular cylindrical cavity at 1150 MHz. 

1 

Figure 2. TM,,, mode surface rf magnetic field 
distribution calculated using the boundary-integral 
method. 

Figure 3. TE,,, mode surface rf magnetic fielc 
distribution calculated using the boundary-integral 
method. 
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