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I. INTRODUCTION 

Minimizing transverse wake-field effects in high gradient 
accelerating structures is of critical importance for future 
high energy linear colliders, including those using wake- 
field accelerators. Dielectric-loaded slow wave structures 
have been proposed as wake-field accelerators and have 
been under intensive study in the last few years [l]. The 
principle of the dielectric wake-field accelerator is very sim- 
ple. It utilizes the strong longitudinal wake field left be- 
hind a short and intense driving beam to accelerate a less 
intense wit,ness beam. Unfortunately, a strong longitudi- 
nal wake field can also mean a strong transverse deflection 
wake field. In order to minimize the deflection of the ac- 
celerated beam due to the transverse wake forces produced 
by a misaligned driving beam, a transverse mode damp- 
ing device was proposed by E. Chojnacki [Z]. This device 
uses principles similar to that used in the slotted cavity 
structure [3]. The configuration of the device is shown 
in Fig. 1. The principles are as follows. The deflection 
modes are non-axisymmetric hybrids containing both ax- 
ial electric and magnetic fields. These hybrid modes are 
comprised of all six cylindrical field components and will 
require hofh azimuthal surface currents and axial surface 
currents. If t,he conductors are segmented to allow only ax- 
ial surface currents, the deflection modes will not be con- 
fined and will radiate beyond the outer wall, establishing a 
surface wave, or trapped mode, within the outer uniformly 
conducting boundary. If this outer region is filled with rf 
absorbing material, the deflection modes will be highly at- 
tenuated. A description of the device with its experimental 
demonstration is given in reference [a]. 

In this paper, we provide an analytical description of this 
dielectric-lined waveguide with an axially slotted conduc- 
tor and give solutions for all the wake fields of any order. 
We show the characteristics of the device and compare the 
calculations with experimental results. 

II. ANALYTIC SOLUTIONS 

A. General Solutions 
Considering the device shown in Fig. 1, we denote the 

volume inside the vacuum hole (0 < r < b) as Region 0, 
inside the non-dispersive dielectric material (b < r < u) as 
Region 1, and the region containing the absorber from the 
axial wire boundary to the conducting wall (u < P < d) as 
Region 2. All of the fields and properties of the materials 
are labeled accordingly. Assume that a point charge e 
passes through the vacuum hole at P = ro and 0 = 0 
with speed ‘u = PC. In Regions 1 and 2, the wake fields 
produced by the motion of a charged particle are given by 
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Figure 1: Schematic diagram of a dielectric wake-field de- 
vice with transverse mode suppression. 

Maxwell’s equations which can be manipulated to yield the 
wave equations 

V2E _ wa2E I 4~~7 aE -- = 
c2 at2 c at 

0 

V2B _ @‘B + 47r~g aB - -- = 0 , 
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where p,t and CY are the permeability, dielectric constant 
and conductivity of the material, respectively. The Fourier 
transforms of the fields are 

E(r,o,z,t) = 2 eim8Ju d~e”“‘(~-~*~‘~ E,,(r,w) (3) 
TlL=--cc -cc 

H(r, 8, r,t) = 2 elm8 1 
00 

dweiw(*-ut)i” H,,(r,w) (4) 
m=-CC -cc 

Due to the finite conductivity of the material in Region 2, 
one can assume that the fields E and H are proportional to 
,-Wj(Z - ut)/u , where wi is the damping factor. The wave 
equations applied to the Fourier transforms then become 

with 

.V’[E, H] + k;[E, H] = 0 > 

2 

kZ 
= pl+ zz pd> ’ (6) 

p’ = p+z----- 

E’ = 4:: 
e+i----- I 

W 

It is easily seen that if one uses a complex magnetic perme- 
ability p’ or complex dielectric constant, c’, one can solve 
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this wake field problem using known methods [l], modified 
in that one must use complex Bessel functions and that the 
resonant frequencies will be complex. Then the damping 
term appears naturally. 

m 1 
a2 = 7 F+s 

( ) 
I (29) 

The unique effect of the axial wire boundary at r = a in 
Fig. 1 is t,hat the electromagnetic fields will have E, = 0 
for r > a and Ee simply continuous at P = a. The general 
solutions for the longitudinal fields in the regions 0, 1, and 
2 can be written 

a3 = 1+ ~CrlW) 
k L(kb) 

61 J’A(b,a) rQ = -- . 
SIV Pm@, a> 

(30) 

(31) 

E$O,! = cx,Z,,,(kr) - qmZ<,,,(kr) (9) 
E$; = A,nPr,,(r,a) (10) 
E;z = 0 (11) 
B;z = &Zm(kr) (12) 

Biz = D,N,(slr) + E,J,(slr) (13) 
82% = Fmbm(r,d) , (14 

The general longitudinal electric wakefield can then be 
written as 

@O)(r, o,z, t) = 2 eime 

VI=--CU 

Sty dw eiw(z--v2)~vcr,Z~(kr) 
-co 

(32) 
where the Fourier amplitudes CY, are all calculable. 

B. Monopole Fields (m = 0) 
When m = 0, under the ultra relativistic limit, p + 1 

and hence kr << 1, it is straightforward to show that the 
longitudinal wakefield at coordinate (r, ZO), where za is the 
longitudinal distance behind the charged particle, reduces 
to 

where 

k = ;d-;Iz 

Sl = ygT 

s2 = pzp-x 

(15) 

(16) 

(17) 

and 

0, = a;Z,(kro) 

Pm = PAL,(h) 

(18) 

(19) 

Qn = iew(ivi “) Zm( krs) (20) 

P,(r, a) = Jm(sla)Nm(slr) - Nm(sla)Jm(sir) (21) 

Qm(r, d) = JL(s2d)Nm(s2r) - N~(s24Jm(s2f) (22) 

The transverse electric fields E, and Ee can be computed 
from the longitudinal components E, and B,. Using the 
boundary conditions of continuity of E,, Ee, D, and Hz, 
we get 

This agrees with the field in reference [l] and is an ex- 
pected although important result. It shows that the ax- 
isymmetric modes m = 0 are not affected by the segmented 
wire and absorber in Region 2. In this way, the accelerat- 
ing wake field (m = 0) is unchanged from that of the usual 
dielectric-lined waveguide with uniform metallic boundary, 
as experimental data showed in reference [a]. 

ala2zZi’,(kb) - a3 [X&(kb)/kv + a+tZGn(kb)] 
cr - 

m - qazrZ,(kb) - a3 [Zh(kb)/kv + a,Z,n(kb)] 
%n , 

(23) 
where 

and 

r,(r,a) = Jh(sla)Nm(slr) - N~(sla)Jm(slr)(24) 
rA(b,a) = J,!,Jsla)N;(slb) - N,!,,(sl#,&lb)(25) 

rm(b, a) r,(b, b) SI rm(u, a> 2 = ~ - m(b,y$,(b,a) r&(4 a) 
&ink 4 (‘W 

E(O) = 4” 
po(b, a) cos 

c[ ( 

( d&) 
20 

clb x 1 $ W, a) + slbPo(b, We) sl=sA ’ 

(33) 
where SA satisfies the condition 

P;(b, u) + $Po(b, u) = 0 . (34) 

C. Multipole Fields (m # 0) 
Again, we are primarily interested in the case of wake- 

fields generated by a charged particle moving close to the 
speed of light, i.e., p 4 1 and kr << 1. The longitudinal 
wakefield is then 

Ei”) = 8e c eime 
m 

where 

Y 
= Qm(u,4 + s_l_rm(a,b) , 

P s2 m Qm(u’d) ’ t27) C(sl) = s + b 
t 

- ,‘,: m (36) 

and sx satisfies the condition 

C(Q) = 0 . (37) 
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Equation (35) is the central equation of this paper. If 
either cg or /12 is a complex number, the roots of C(sl) 
will be complex roots and the resonant frequencies WA will 
be complex as given by eq. (16). As we stated earlier, 
the imaginary part of w is the damping factor of the wake 
fields, so t,he wake fields are then damped naturally. This 
result is drastically different from the tn = 0 case. The 
m # 0 modes are affected by t,he material in Region 2 and 
can be damped if the material is lossy. 

III. NUMERICAL EXAMPLES 

We have given analytic expressions for the wake fields; 
in this section we show some of the numerical results 
and cornpare them with experiment. To find the roots 
of the complex f-unction C(w), we use the IMSL routine 
DZANLY. We examine only the case for tn = 1. All other 
higher modes can be calculated in the same manner. 

We calcula.te the wake fields for the parameters used in 
the experirnent : b = 1.27 cm, a = 1.905 cm, d = 2.5 cm 
and tl = 2.55, the rms (assumed Gaussian) bunch length 
of both the driving and witness beams is u = 3 mm. Other 
parameters like /ia, c2 are unknown but are estimated. We 
used equat,ion (35) and Panofsky- Wenzel theorem [4] to 
calculate the transverse forces. rg is taken as the centroid 
of the driving beam. In order to compare the calculations 
with the experimental data, we set the value of TO = 1 mm. 

Figure 2 shows the calculated transverse wake using the 
above parameters and estimated ~2~ = 20, ~2~ = 2, and 
/Lai = 3. The transverse wake field damps out after a 
few cycles, in qualitative agreement with the experimental 
data as shown in Fig. 3. This indicates that our theo- 
retical treatment closely describes the general properties 
of tile transverse mode damping device. The amplitude 
of t,he calculnt,ed wake is slightly smaller than that mea- 
sured, but we think this is because we have ignored all the 
higher order radial and azimuthal modes. For comparison, 
the transverse wake in the case of the uniform conducting 
boundary (h = d and no damping) is also shown in Fig. 2. 

IV. CONCLUSION 

We have calculated the wake fields in a dielectric waveg- 
uide with deflection-mode damping. An interesting prop- 
erty of the structure is that the axisymmetric mode is un- 
affected by t,he lined wire boundary and all higher order 
modes can he damped very quickly (in a few cycles). This 
has irnport,allt implications for the dielectric-based wake- 
field accelerator. By reducing the beam-beam deflection, 
one may use multiple drive bunches to enhance the axial 
acceleration wake field without severe accumulated trans- 
verse wake-field effects. A large number of bunches also 
means that the total charge in each bunch can be reduced, 
thus reducing the head-tail instabilities within the driv- 
ing beam, alt,hough the head-tail instabilities can be con- 
t.rolled to a certain degree by alternating focussing and 
defocussing nlagnetic fields applied around the wake-field 
device [5]. 
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Figure 2: Calculated transverse wake fields. The broken 
(solid) line refers to damped segmented (undamped uni- 
form conductor) structure. 
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Figure 3: Measured transverse wake fields for both uni- 
form outside conductor and segmented conductor dielectric 
wake-field devices. 
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