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Some questions of ion beams interaction
with RF and electrostatic fields in a
linear undulator accelerator (llineondutron)
with the plane undulator are consldered.
It i1s shown that in a lineondutron simul-
taneous acceleration of oppositely charged
particles with the 1identical charge-to-mass
ratio( for ex, Atand H) may essentially
increase the overall beam Intensity up to

a few Amp.

1. INTRODUCTICON

An  idea to apply undulators for
acceleration of relativistic beams 1In a
plane electromagnetlic wave was discussed
more than once. Various mechanisms and
acceleration schemes were proposed to acce-
lerate electrons In magnetostatic undula-
tors and their description can be found
In Refs.[1-3]. The similar principles can
also be used Ifor acceleration of non-re-
lativistic 13ion beams [4). In this case for
low 1injection energy 1t 1s advisable 1to
replace the magnetostatic undulator by the
electrostatic one. The configuration of pe-
riodic electrostatic field can be chosen
S0 as to provide an effective tiransverse
particle focusing without applying additi-
onal eXxternal fields [5].

In this paper we dlscuss one of the
possible versions of such linear accelera-
tor, in which the ribbon ion beam 18
accelerated 1n the transverse RF- field
and the field of a plane electirostatic
undulator. The required field distribution
1s achieved by the approprlate systiem of
electrodes, mounted 1In a resonator and dc-
1s0lated between each other. Both the RP-
and electrostatic potentials are supplied
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to adjacent electrodes, forming the accelera-
ting channel (indicated by U and U0 in tig.)

The RP-frequency corresponds to the undu-
lator space perlod D. Once Influenced only
by the RF or electrostatic field , the
particle travels along the dotted curve
In fig., and, as 1t 13 evident, 1t3 energy
remalns constant. If both the fields simul-
taneously Influence on the charge, the
particle energy doesn't vary In the trans-
verse direction and increases in the lon-
gitudinal direction. The corresponding elect-
rostatlc fleld 1ines and particle trajec-
tory in a combined-wave fleld are indicated
In fig. by the solild 1ine.

2. PARTICLE MOTION EQUATIONS

In a 1llneondutron scheme proposed a
plane electrostatlic undulator 1s combined
with the RP-system. The electrode positlions
define the values of the fundamential space
harmonics: the 2zero RP-field harmonic and
the first electrostatic field harmonic,
which are the working ones In our case.
Higher bharmonics values , 1n turn, depend
greately on the electrode shape and size.

The fleld strengthes 1In the periodic
system 1Involved can be represented as

PAC 1991



v_ pod z
a.y-av (1 ;rl§=}1 a'?ncbzmy cos (2n£kd2.)sin('t+'£o) ),

v

0 Z
azz—avn§=}1 ae2nsh2}my sin(ankdz)sin('cmo) ,

o ) Z (1)
ay=aomf=j1 &1 ch(2m-1)ky cos (2m-1) lgkdz.

) ® Z
a.=-a sh(Zm-1)Ky sin(2m-1 dz,
2=80 2, Bom- Ky )k

where a,= e 21un02 and 8y= eEoMZ'luncz -

the dimensionless amplitudes of the =2ero
RP-rield harmonic and the 1-st electrosta-
tic field bharmonic, A-the RPF-field wave-
length, ﬁsznla.—the synchronous particle velo-
city, 1=2mct/A, aezn(n>1). &om-1 (m22)-the nor-
malized higher harmonics amplitudes, which,
as well as the Tfundamental ones, are non-
syncronous with the beam, k=2w/D(z) - the
wavenumber.

By using the smooth approximation me-
thod one may derive the expression for
the effective potential, describing the ave-
raged particle motion

where Uo-—-aich(Zp/ps)/A —avaoch(p/ﬁs)/z +a$/4

the potential due to fundamental harmonics,
AU -an addition due to the higher harmo-

4
nics, ¢= tgd&/fis—'wno-— the slow varylng fase

in a combined-wave fleld, £=2mZ/A and p=
21Y/A- the normalized longitudinal and tran-
sverse coordinates in the smooth approxi-
mation.

Correspondingly, the averaged
equations can be written as

motlon

s Ep O Ugpy

(3)

3. FASE AND TRANSVERSE STABILITY CONDITIONS

Considering the higher harmonics, we
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may Trestrict ourselves by the harmonics,
nearest to the working ones. Then near the
injection plane ( p =0 ) the first eq. (3)
ylelds:

2
i i (1+4) (4)
— = —— (14+A) CcOS¢p,
d« 28g ¢
2
where by=a, 8,, @ = 8 /85, A= %, /2 +
2 & /18- 2 a », sin ¢. When neglecting

the higher harmonics, the acceleration rate
1s proportional to a, a,. An appropriate
choice of the functlons a,(E), a,(f) and
Pg(€) turns out to supply an effective
bunching and acceleration of the beam. It
A<0 and p = 0, the potentlal function
has the only minimum at the point ¢=¢g.
When @, Increases, the syncronous particle
energy decreases, as a rule. At the same
time the phase and momentum stabllity regl-
on grows. With the further Increase of %
the second minimum of Ugsp, 88 well as
the second separatrix appear. In that case
the minimum at ¢=¢p5 becomes less pronoun-
ced and gradually dilsappears.

Prom eq.(3) one may obtain the condi-
tion of the transverse particle focusing.
Taking into account the fundamental harmo-
nlies, we get

2 ch (2p/fg)>a ch (p/Bg)sin ¢. (5)
When a sing < 2 for the particle fase ¢
Ugrr(P) has one minimum at p=0. If a sing
> 2, an intermediate maximum at p=0 appears,
and at p =t Py, where p, 1s a root of the
equation ch (p /fg)=a sin ¢/2, two minimums
take place. Thus, two stable trajectorles of
the beam, splitted spatlally and located
outside the plane p=0, appear. The particle,
depending on 1its 1nitial conditions, can
be placed on one of such trajectories, and
the beam - splitted into two beams, what
i1s undeslrable.

Taking into account the effect of the
higher harmonics on the transverse beam dy-
namics doesn't change significantly the qua-
litative picture, described above. However,
the stabllity conditions are defined from
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more complication equation. The analysis of
the expression for AU showed, that with the
increase of &, the 1iransverse osclllatlion
frequency Wy decreases, and the focusing 1s
worsed. Inversely, at &3 < 0 with the 1In-

creased |g;| wy grows.
4. ACCELERATION OF QUASI - NEUTRAL BEAMS

All the results, obtained above, re-
late to acceleration of both the positive
and negative 1lons. An Interesting proper-
ty of a lineondutron 1s that i1t doesn't
distinguish between them. The acceleration
equations are Independent of the sign of
charges. Therefore, under the ldentical ratio
(z%/ M)(for ex., H' and H )and the same in-
Jection conditions bunching and capture
processes occur at the same resonant fa-
se. This can allow accelerating overlapping
positevely and negatively charged ion bun-
ches , thus avolding space-charged effects
and Increasing overall beam Intensity. Such
bunches can be made practically neutral.

The dynamlcs of Intense beams, inclu-
ding space-charge effects , can be analyzed
in more detail only by means of exact nu-
merical Integration studies. Numerical re-
sults conflrm the conclusions, made before
analytically. For the quasi-neutral bunches
the results, obtalned in a single- charge
approximation, are found 1o be close enough
to those obtained while taking into ac-
count 1intrinsic quasi-static beam flelds.
It takes place , even 1f the trajectories
of the oppositely charged particles don't
completely overlapp In the transverse cross-
sectlion.

The corresponding choice of the funda-
mentaland higher field harmonics enables to
provide the focusing of quasi-neutral bunches
in that case, 1f 1t exists for a single
particle. The electrodes may have circular or
rectangular profile. Calculations show that
under the geometrlcal sizes of electrodes,
normally used 1In practice, the harmonlc
amplitudes range as Tfollows: ®,=0+0.2, g&4=
-0.3 + 0.3.
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5. CONCLUSION

Simulation results of the beam dyna-
mics and detalled study of forming the re-
qured flelds showed, that 1t 1s possible
to create a lineondutron with a final energy
of about 1 Mev. For example ,the parameters
of H'and H accelerator with an injection
energy of 50 kev, RP- generator frequency ol
150 MHz were calculated. The accelerator in-
cludes bunching and acceleratlon sectlons.
On the former the fleld amplitudes gradu-
ally Increase, and the syncronous fase de-
creases by the llnear law. On the latter
these dependencies are chosen constant. The
main accelerator characteristics are the
following: average acceleration rate - 0.55
Mev/m; capture coefficient- 0.8; transversal
acceptance =~ 0.1 cm.mrad; RF- and electrosta-
tic field amplitudes — 180 kV/cm and 65 kV/cm
respectively; minimum half-size of the rib-
bon aperture - about 4 mm.
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