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Abstract In the undulator approximation [3] the electron trajectory 
A deterministic approach is taken to study the effect of is assumed to be a straight line and the synchronization of the 

errors in the wiggler magnet field on the spontaneous emission electron with the EM wave is through the transverse velocity 
and the gain of Free Electron Lasers. A 3D formulation is imposed on it by the wiggler. For a highly relativistic 
used to derive the reduction in spontaneous emission due to electron this velocity is: 
changes in the time of flight of the electrons. A generalization 
of Madey’s theorem to 3D is then used to calculate the K [1+3(z)] toe k&:, (3) 
reduction in the FEL small gain. 

I. INTRODUCTION where 

The conventional approach taken in order to study the 
effect of wiggler errors on radiometric parameters is statistical 
in its nature [ 1,2]. This approach is good at the design stage 
of the device when tolerance must be specified for the 
construction of the wiggler. However, once the wiggler is 
constructed, its errors can be measured and the radiometric 
parameters for that particular wiggler can be calculated. 
These parameters may differ significantly from those 
calculated at the design phase. A deterministic approach is, 
thus called for in order to evaluate the expected radiometric 
parameters and to decide how much effort is needed to correct 
the wiggler errors. 

Il. REDUCTION IN SPONTANEOUS EMISSION 
(UNDULATOR RADIATION) 

The spectral radiant intensity of a charged particle is given 
by [31: 

dP =1, I 
dodn = -ii- 2 
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is the wiggler strength parameter and s(z) is the error in the 
wiggler field. Substituting equation (4) into equation (2) 
yields. 

dz [l +s(z)]~~~ 

where 
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is the detuning parameter [4]. One can see that in equation (5) 
the effect of the wiggler error on the radiation path integral I, 
can be distinguished from the total path integral. Thus, the 
path integral may be written as: 

I, = I, + AI, (7) 

where 0 is the view angle and 

Ie=p&),;?~~~i%+i”’ 
.m (2) 

where I, is the path integral of a perfect wiggler and AI, is 
the contribution of the wiggler errors. Explicitly, the perfect 
wiggler path integral is: 

In equation 2 v(t), r(t) are the particle velocity and its 
respective trajectory e,, k are the polarization of the 
electromagnetic field and its wave vector respectively. 
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where where 

(9) 

and 

sim x 3 sinx (10) 
x 

In order to calculate the wiggler error contribution, it is 
assumed that s(z) is constant along half a wiggler period of 
this assumption may not hold if the wiggler has multi-poles 
per half period). S(z) can then be 

s(z) = S” ; fir n? <z<(n+l)T ; 0 < n x w (11) 

In equation (11) N=L/k is the total number of wiggler 
periods. To simplify the calculation we assume that s, 
averages to zero over the wiggler length. Note that this 
assumption does not reduce the generality of the treatment, 
since the value of K can always be modified to accommodate 
it. Substituting equation (11) in equation (5) results in: 
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where 

5 ew 2 awe, = - 
N 

We now can calculate the spectral radiant intensity by 
substituting equations (8, 9) into equation (1). Here again we 
express the total spectral radiant intensity as a sum of the 
radiation from a perfect wiggler and the modification of the 
wiggler errors. 

dzP _ d2P* &W -- 
dodn dad!2 dodn 
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It is preferable to express the wiggler errors term as a 
subtracting term, since one can hardly expect them to increase 
the radiation. The perfect undulator spectral radiant intensity 
is: 

BP* 
dodn 

The wiggler error term is 
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It is constructive to calculate the relative reduction of 
radiation due to wiggler errors. This is achieved by dividing 
equation (16) by equation (15): 

&c!!Z!(~~?M +.!sim ew --pJ ~(A~/(dod~)~, 4 2 * 2 
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From equation (18) one can see that the relative reduction 
of spontaneous radiation of an undulator is independent on its 
length. The correlation functions M, and & have in them the 
total number of magnets poles. However, assuming that the 
errors have the same statistical behavior throughout the 
wiggler, this dependence cancels out. This fact leads to the 
important conclusion that one does not have to change the 
tolerances of a designed undulator when changing its length if 
its only purpose is to produce undulator radiation (e.g. an 
insertion device in a storage ring). 

III. REDUCTION IN SMALL GAIN 

The small gain in Free Electron Lasers can be calculated 
from the spontaneous emission of an undulator with the use of 
the generalized Madey’s Theorem. This Generalization of 
Madey’s Theorem [4,5] is described in reference [6]. In this 
paper the relation between spontaneous emission and gain was 
derived from first quantum electrodynamics principles and 
selection rules for electron-photon-wiggler interaction. The 
gain dependence on the spontaneous spectral radiant intensity 
is given in reference [6] by: 

G = g+(+ + @q&),&$(6 (19) 

where the gain G is defined as G = (P, - Pd I P,, A,, is the 
effective area of the electromagnetic mode being amplified and 

(20) 

is the recoil angle of the electron. In most practical cases 
k,,,C <k, hence, cos 8, - ec.ek. In equation (19), F(B) is the 
lineshape function of the spontaneous emission. For a perfect 
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wiggler this function is 

F(g) = sinc’~ (21) 

Since the Generalized Madey’s Theorem as described in 
equation (19) is based on Q.E.D. first principles, it is valid 
also for the case of a non-perfect wiggler. However, for a 
non-perfect wiggler the spontaneous emission can no longer be 
described as having a single lineshape function. Instead, each 
term in the spontaneous emission has its own lineshape 
function. This problem can be easily solved when one realizes 
that the derivative of the lineshape function in equation (20) is 
due to the fact that the emission and absorption control 
frequency are slightly displaced from each other. Thus, 
Madey’s Theorem holds for each of the spontaneous emission 
terms independently. The total gain is, thus, the sum of the 
applications of Madey’s Theorem to each of the spontaneous 
emission terms. The gain can also be written as the sum of 
the gain of a perfect wiggler minus wiggler errors 
contribution. 

G = Go - AG (22) 

The gain of a perfect wiggler FEL is given in reference [6] 

+c& , $[$ + r82a+x+i;l. :.,.-&tnc$ (23 

The reduction of the gain due to wiggler errors is 
calculated by applying equation (19) to eqs. (17). 

8 
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where 
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In equations (25), it was assumed that N > > 1. It is again, 
interesting to calculate the relative reduction in gain: 

A.9 =& 
MG+;RG 
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(26) 

Note that for a consistent statistics of the wiggler poles the 
correlation functions M, and & are expected to behave 
linearly in N. Thus, canceling the &,/L factor in equation 
(26). Hence, the relatively reduction in gain is expected to be 
weakly coupled to the wiggler length. 

IV. CONCLUSION 

The small gain and spontaneous emission reduction due to 
wiggler errors was calculated, including some 3D effects. 
This formulation only takes into account the effect on the 
phase between the electron and the electromagnetic wave. 
However, there is another important effect to be taken into 
account that that is the effect of the “random walk” of the 
electrons from the axis. It seems, that the formulation used in 
this paper can be extended to include “random walk”, and it 
is the intention of the author to pursue this course of action. 
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