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ABSTRACT The problem for reaching high The abscissa is refered to the period or fraction of 
efftciencies in RF-linac driven FEL’s , is to cross the period : x is the independant variable 
perturbed region between the small signal and the 
large-signal operation due to large phase shifts 
variations. 

bz = p(x) dx 

We consider the FEL as a Traveling-Wave-Tube 
(TWT) or the reverse of a tapered buncher as in an 
electron accelerator The equivalent transverse 
gradient is _. 
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.The difference with a TWT is that the EM beam 
instead of being guided inside a waveguide , is in free 
space 

A- ASSUMPTIONS : 
l-multi-pass operation : the build-up of the 

oscillation requires 100 to 200 turns (order of ins) 
2-gain per pass 1.02-1.03 in gradient to 

compensate losses and useful power : E=Const 
3-efficiency : energy transfer - electrons-to- 

EM - at each pass: For a 20% efficiency , the product 
2 pci+p 

has to change about 40-50% in value along 
the undulator during the steady-state operation . 

4-spontaneous emission does not contribute to a 
substantial amount to the exchange of energy between 
the electron beam and the EM wave, Harmonics can 
be considered , eventually as a nuisance for the 
mirrors ,or as a low power source . 

5-Coupling impedance : 
Two conditions are necessary for a snbstantial 

exchange of energy between beam and RF : 
a/ the beam current must carry a large component at 

the frequency of operation, -means good bunching- 
b/ the line must create a coupling impedance Z 

which ,in the case of a perfect undulator and a 
transverse wave, in id@conditions , is simply 

+j~o =K 
0 Y‘I) 

This is true as well for the fondamental or 
harmonics if we would like to generate them with an 
acceptable efficiency. 

B-EQUATIONS 
p is the period and K (.94 B.p) the conventional 

undulator factor . They are defined for one full period 
Since the period and the magnetic field may vary , 

we introduce a coefficient proportional to the inverse 
of phase velocity , versus a reference given by po 
and K, : 

q2 K2 2 = PO(i+~o> / p Ci+z> 

and we use the two equations for phase and energy 
along the line : 

“= 2: -1 y, 

In these equations , the wavelength enters as the 
scaling parameter E,A . 
The “transfer coefftcient” a is the sum of the values 
of u over all phases calculated at each period . 

C- UNIFORM UNDULATOR and 
UNIFORM-TAPERED : 

Fig 1 and 2 summarize the results in those two 
conventional situations . The data come in two sets of 
curves : evolution of phase and energy along the line 
for each value of the RF level (EA) , and value of the 
transfer efficiency v El. 
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FIG 1. Phase and energy diagrams. 
TOP : unirorm undulator Eh =IkV 
BO-ITOM : Buncher +tapered undulator EA =J5kV 
the efficiency displayed here is 33% with a 90 periods 
undulator , including 14 periods for the buncher 

For the uniform undulator ,and EX < .5 kV ,the 
transfer coefficient is in (EA)2 ,(slope 2 on the 
graphic Fig 2) as in the conventional small-signal 
theory. 
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The effticiency levels off at about l-1.5% and starts to 
drop if the RF level is made to increase above 1 kV. 
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FIG 2 Transfer coefficient vs (EX) 

With the tapered undulator ,and values of the 
parameter Eh above a few kVolts , we are in the 
“large-signal” conditions . The bunching is nearly 
complete . The efiiciency of tranqfelf is then roughly 
proportional to Eh instead of (EA) as in the small 
signal situation . 
The beam intensity whidh can sustain the oscillation 
is: .I e 2 n=- a 

I 2 . 
cAmp’ e ‘4q moo 2 4 

- ---y T--J-$-$’ Y .Z’ .ff w---2 

ff : form factor of the RF beam (order of 1.4) 
b : lossLcoeficient per turn of the RF (3-5%) 

It is well known and can be seen on Fig 2, that such a 
tapered line has no gain at small signal (slope below 
.5 kV larger than 2) : oscillation does not start I 

D- BUNCHER+STRONG TAPER 
+UNIFORM+SLIGHTTAPER 

A high gain structure must be added , of course not 
a/lead of the tapered part (it would behave as above)! 

but n&r . And we arrive at a geometry similar to the 
bne already described and tested’. 
At small signal , the tapered part acts as a delay line 

between the buncher and the uniform line . The small 
signal coming out of the buncher is amplified and 
must arrive at the correct phase in the line . In the 
large signal operation , buncher + tapered portion 
behave as previously. 

However there are very strict limitations in this 
operation : The number of periods of each part is 
critical , in order to get the optimum phase shift. 

For monoenergetic electrons , there always remains 
a “hole” in the efficiency curve ,between .5 to 1 kV, 

and the system would stop building up . Fortunately, 
this hole is flat exactly at the same place for different 
electron energies ,within 0.4% . So, if the available 
current in the beam were sufficient , this critical 
transition could be passed 

E-PROGRAMMING THE PROFILE 
DURING BUILD UP OF OSCILLATION 

This will be the correct solution : change the line 
profile, so that the profile is continuously adjusted to 
the level of RF power . In a TWT , this , of course , is 
impossible . But here , the build up covers 100 turns 
or more , which represents a duration of one , or a few 

microseconds which is enough to program the 
kurrents which create the magnetic field in the 
undulator . 
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FIG 3 Variation of the magnetic field YS (Eh) and N. 
For (EA)< .5 kV, there is no taper . 
above .5 kV, the diagram is swept during the few 
microseconds of rise time. 
Tapering starts just one or hvo periods after the buncher . 
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FIG 4 Transfer coefficient v~ (EX) .The transition behveen small 
and large signal is smooth , and efliciencies larger than 
20% can theoretically be obtained with 35 - 40 periods (not 
including the buncher). 

Of course , this implies that the undulator has no 
magnetic material , and is short enough so that the 
reactances are kept small . 
Fig 3 gives the slopes of the taper vs the RF level . 
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In the large signal region , ( Eh) increases of an 
equal amount per turn , and since each turn has the 
same duration , dE/dt is a constant . 
Fig 4 is a typical plot of the transfer coefficient , for a 
34 period-line preceeded by a 19 period-buncher , 
which shows a 20% effkiency at a value of (EX) not 
too high for the mirrors . 

It can be seen that the bunching is of the order of 
XO?Gl , so that side-bands excitation has a very low 
efficiency w and the bunches are 30-40 degrees in 
phase so that the space-charge fields stay below a few 
percent of the main RF field Ooo. The “transfer 
coefficient” can be of the order of .4-.5 % per period 

for a temperature difference of 100 “C and a duty 
factor of VI00 ,the period is limited down to 7 mm for 
K=l.4 and 3mm with 200 “C and l/300 duty factor 

In the end : the major difficultywill be in the mirrors 

F- TECIINOJ>OGY /\ 

FIG 6 Arrangement of the cooling pipes 

G- HARMONICS ENHANCEMENT 
If the “bars” corresponding to each half period are 

divided into two or more “sub-bars” in parallel , as in 
Fig 5 , it is possible , by changing the relative 
distances , to have a Kn value of the coupling 
parameter even larger for the harmonics than for the 
fondamental as it is shown in Fig 7 . 

Schematicwe of an undulator 
II and II : Derivation currents to control B(z) vs time. 

The major difficulty is obviously to provide 
sufficient cooling capacity . The undulator presents 
itself as two layers of ” bars ‘I ( 1 or 2 mm cross-section 
,and 10 to 20 mm long ) . Copper bars can be cooled 
at the two ends if 100-150 degrees C can be tolerated 
between the middle and the ends . The cooling pipes 
are four- titanium or stainless steel -spirals , cooling 
the four ends of the successive bars . The period of the 
spirals is the same as for the undulator . Pipes are 
available down to 2 mm in diameter , so that the 
mechanical limit of this type of technology is around 
2.5 mm period for the undulator. 

The maximum current which can be passed through 
such a “bar” is - 

I (Amp> p433 .T.$$ 

where : s and 1 are the cross-section and length of the 
bar( mm) 

f-r. is the duty factor 
AT is the maximum temperature difference. 

FIG 7 Coupling factor K for the fundamental and harmonics 
3 and 5 , for the structure represented on Fig 5 : Two bars in 
parallel for each half period 
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