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I. INTRODUCTION 

The proposed lattice for the MKF Booster low-energy 
(7.47 GeV) synchrotron [I] has a racetrack shape with two 
180’ arcs and two long dispersion-free straight sections. To 
obtain the desirable high transition energy yt 2: 20 each arc 
has a ‘missing magnet’ FODO structure with relatively small 
modulation of the p-functions [2]. The horizontal betatron 
tune of each arc QZ equals to 3 to provide zero dispersion 
in long straight sections. In order to reduce the tune spread 
32 sextupoles are placed in the arcs for chromaticity correc- 
tion. In contrary to sextupoles introduced intentionally, in the 
Booster lattice there are casual and, generally speaking, un- 
avoidable sources of nonlinearities like multipolar field imper- 
fections in the magnets. Since, the Booster is high-intensity 
synchrotron (average current = 250 PA) with large transverse 
beam size, the nonlinear dynamics of the particle motion is a 
matter of serious interest. In order to be sure that the lattice 
is satisfied the design performance in presence of chromaticity- 
correcting sextupoles we have to estimate the phase-space dis- 
tortion, the growth of the effective emittances’, nonlinear tune 
dependence on the amplitudes, etc. We should also determine 
the acceptable multipole contents of the Booster magnets. 

In general, the study of nonlinear effects is very complicated 
problem and it has various aspects. And, we are not stupid 
enough to have a hope to solve the problem completely in 
one ‘jump’. The present note is an attempt to understand 
the phase-space topology and rather the plan for future work 
should be done than a full description of nonlinear properties 
of the lattice. 

As a first step, to be sure that the lattice allows for chro- 
maticity correction, we have studied the nonlinear actions on 
particle motion provided by sextupoles for the perfect ma- 
chine, i.e. without misalignments and multipolar imperfec- 
tions in the magnets. 

II. NONLINEARITY DUE TO SEXTUPOLES 

The oscillation of the dispersion on the arcs, corresponding 
to high Yt, significantly reduces a number of places in which 
the sextupoles can be installed. Consequently, the chromatic- 
ity correction requires relatively strong sextupoles. This is the 
general disadvantage of any racetrack high transition energy 
lattice with relatively small circumference. 

A. The principles of analysis 

Let us give some remarks concerned the principles of analysis 
of nonlinear dynamics. In this study we have attempted to ob- 
tain a clear view of the following regions of different particle’s 
behavior: 

l a region of quasi-linear motion that is often called “linear 
aperture”; 

l a region of chaos; 

‘It is important to provide some safety factor in the aperture 
definition. 

. a boundary region beyond which motion becomes un- 
bounded - “dynamic aperture”. 

Linear aperture 

Since we suppose the particle motion would be in the range of 
linear aperture we try to estimate the size of this region. TO 
do this it is essential to have a criterion of “linearity”. The 
good candidates for such figure of merit are 

- amplitude depended tune shifts from the nominal values 
Qzo , Qyo; 

- some kind of “SMEAR”; 

In analysis of tracking data the set of particle positions 
(z,p2,y,py) obtained after each turn is used to compute the 
quantities eZ,cy and w, where c, , z = {z, y} is invariant of lin- 
ear betatron theory (‘emittance’): L. = yIzz + 2a,p,z+/3&. 

z And ‘w = (~2 + cY) ‘Ia. Then we have computed the average 
and and rms values of them: &,z,, ii?, crZ, cry1 Q~. The three 
kinds of smear S,, S,, S, are defined as 

At this stage of the study the phase-space region in which the 
following criteria (both or one) are fulfilled: 

s /AQ/ < 0.005; 

l s.,s, ,sw 5 15%, 

we call “linear aperture”. 

Dynamic aperture 

The most general definition of dynamic aperture (DA) is 

Def. 1 The DA is the phase-space volume ( set of initial con- 
ditions {xO,pz~, y~,p~o, TO, 6)) for which the particle motion is 
stable (remains finite) over a large enough number of turns Nt 
i.e. [z(n)1 < A,, z={z,y},n=l... NC, A, is a boundary. 

Thus to obtain the DA one should test many particles with 
initial conditions within a range of the phase-space in which 
the particles are injected. In practice, since a number of the 
testing particles and number of turns for tracking are lim- 
ited by computer power and ‘staying power’ of scientist, one 
should accept some different and less general definition of the 
dynamic aperture: 

Def. 2 The DA is a set of initial conditions of actions 
{J,o, Jar01 (Jz = cZ/2) and 6 at fixed initial betatron phases 
4=ar +Y~ for which the particle motion vemains finite outer a 
fixed number of turns Nt i.e. [z(n)/ < A,, z = {x,y}, TZ = 
1 . . . Nt , A, is a boundary. 

Obviously, the finite number of testing particles and a par- 
ticular choice in the initial betatron phases 4=0, 4y~ leads to 
that DA defined by Def. 2 becomes 

l in dependence on the azimuthal position of the inspection 
point IP (i.e. starting point for tracking) and 
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s in dependence on the particular choice in the initial 
phases. 

This dependencies require to analyze larger than one point in 
the lattice. In section B. you will see why we have chosen two 
inspection points: the first point is localized at the entrance 
of the arc, the second one is placed in the middle of same arc. 

At this stage of the research we have found by tracking over 
N1 = 1000 turns only cuts of the stable volume corresponding 
to on-momentum particles 6 = 0 with full coupling, i.e. e, = 
c We have tested only one particle with particular 
cLoEei.s = p,s = 0 (dZ = dy = 0) for each value of E. The 
boundary A, was chosen equals to 1 m for both transverse 
planes. 

B. Linear arc’s optic and geometric aberrations 

In proposed lattice design for the Booster the conditions for 
the arcs to be a second-order pseudo-achromat are fulfilled [3]: 

l the horizontal betatron tune of each arc QZ equals to the 
integer (QZ = 3), the vertical tune of the arc Q, is only 
slightly differed from integer number Q, = 3.125 (it is 
needed for acceleration of polarized proton beam); 

s the tunes of the superperiod (vZ = 0.75,~~ = 0.78125,) 
are not satisfied the resonance conditions: mu, + nvy # 
integer, (m,n) = j(u), (3, o), (~2)~ (1, -2)). 

In this case all low order resonances introduced by sextupoles 
are compensated after passing of each arc. But, in any second- 
order achromat there is a point xx an odd integer distant from 
the entrance of the achromat (in our case this point is the 
middle of the arc), in which the influences of these resonances 
are still great. Really, in the first order in sextupole’s strength 
the perturbation of the linear invariant of motion (or action) 
J after passing N superperiods having identical sextupole’s 
arrangement is expressed by 

]AJ] 2: (AJ,,,l . ’ 
1 - cos(2rN(m vz + n. vy)) 

’ 1 - cos(277(m. vz + R. vy)) 
(2) 

where A J,uy is an integral over one superperiod. It is clear 
from (2) that at the ends of the arc (N = 4) there are not 
the phase-space distortions provided by low order sexdtupole’s 
resonances, but near the middle of the arc (N = 2, N. vZIY E 
1.5 the influences of that resonances are still great. Just be- 
cause we have carried out the analysis for two different points 
in the lattice: the first inspection point (IPI) is the entrance 
of the arc, the second one (IP2) is the middle of the same arc. 
In Fig. 1,2 the phase-space plots p,,, = -l/fi(oz + pzp) 
versus xn = x/@ for horizontal betatron motion are shown 
for these points of the arc. One can see the large phase-space 
distortion in the middle of the arc corresponding to the strong 
113 resonance. 

C. Results 

Following the principles described above we have used the 
program DIMAD [4] for tracking particles. The phase-space 
coordinates of the particle, obtained for each turn in points of 
the arc IPl and IP2, are used to calculate all kinds of smear 
defined by (l), the average and rms values of the betatron 
tunes. The results are summarized in Fig. 3-7. In Figures 
3-5 the smears S,, S, and S, versus initial amplitude of the 
testing particles e are shown. As you can see, in all cases the 

Cl.08 -7 

0 
--A 

P / \ 
xn 

0.00 1 

$0 

0 \ 

\ 
/ 

/ 
\ -A 

~as,.........~.,,.‘.” -0.08 
“x. 

Figure 1: The turn-by-turn tracking data displayed in nor- 
malized phase space. Plot corresponds to the entrance of the 
arc. 

Figure 2: The same phase-space plot as in Fig. 1, but the 
indicated particle positions correspond to the middle of the 
arc. 

smear computed for inspection point IP2 considerably larger 
than smear for IPl. The same is true for rms values of the 
tunes (Fig. 6). Based on these results we derive that the lin- 
ear aperture is about 250 II mm mrad. The dynamic aperture 
in sense described above, is approximately 2300*mmmrad. 
Near the DA the smear becomes N 100%. As it is seen from 
Fig. 3,7 at the amplitudes about 1000~ mmmrad there is a 
strong coupling resonance. 

III. THE EFFECT OF HIGH-ORDER 
MULTIPOLE IMPERFECTIONS ON DA 

In order to estimate the effect of multipole imperfections of 
magnets on DA, the systematic multipole components have 
been taken into consideration. Two thin-multipoles have been 
used to simulate the field errors in each dipole magnet. They 
have been placed in the both ends of the dipoles. At present 
stage, we use the following integrated strengths of the mul- 
tipoles: Kz = p = 102.81, Kd = 7.68, Kc = 2495.5, KS = 
-6235.5 ‘. To estimate the importance of each multipole, 
we plot DA versus number of the field harmonic (Fig. 8). We 
have found that the systematic multipole field harmonics in 
the bending magnets K, and KS could significantly reduce the 
dynamic aperture (Fig. 8). Further study should be done to 
obtain the upper limits of the tolerable multipole field errors. 

*We we the DIMAD’s definition of K,. 
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vs. initial particle’s amplitude 

IV. CONCLUSION 

It seems from the obtained results that proposed lattice for 
MKF Booster is allowed for chromaticity correction. Much 
more systematic work should be done to study the effects on 
the beam dynamics of nonlinear field imperfections. 

V. REFERENCES 

[l] Yu. V. Senichev et al.,“ The accelerator complex of the 
Moscow Kaon Factory,” in this proceedings 

Figure 5: Smear S,,, vs. initial particle’s amplitude Figure 8: The dynamic aperture versus systematic multipole 
c [7r mm mrad] field harmonic of the dipoles 

.F 
u! 

I/: 

// 
x I 

2 /I 
9.M ,--\*’ 
ln 

-“] -4 

Figure 6: The rms values of betatron tunes vs. initial ampli- 
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