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Abstract 
The performance of the CERN Proton Synchrotron 

(PS) at injection is limited by resonance effects caused by 
space charge tune spreads. 

This paper describes a new computer code for calculat- 
ing the incoherent tune spreads and the beam envelopes 
in linear coupled synchrotron lattices in the presence of 
transverse and longitudinal space charge fields. This work 
is based on an existing theory devised at DESY using the 
six-dimensional phase space formalism. It has been ex- 
tended to deal with the nonuniform charge density within 
the bunches. The application to high intensity beams at, 
present in operation in the PS is discussed. 

I. INTRODUCTION 

The understanding of the space charge effects is of pri- 
mary import.ance for low energy circular accelerators and 
st,orage rings. Theoretical models which permit reliable 
numerical sirnulat.ion are desirable t,o analyze the beam 
behaviour. 

In this paper the original formalism developed at DESY 
[l, 21 is extended by taking into account nonuniform charge 
density within bunches. Throughout this text the same 
variables will be used as those in [2], i.e. 2, Z, u = s - 
,&d.q = aE/E, where 2, .z describe the transverse beta- 
tron oscillat,ions, u, 7 the synchrotron oscillations in the 
longitudinal plane, s the arc length of the reference orbit, 
and 8, E the velocity in units of c and t,he total energy of 
the reference particle respectively. 

u=l 

Ai,j = 0 otherwise Gil) 

with y = l/&p. Here q(s) is the quadrupole 
&rcngth, iv(s), H( ) s are the skew quadrupole components 
and solenoid fields, Iii,(s), I\‘,( ) s are the curvat.ures in the 
s and y directions, and 1x1 is the number of cavities (as- 
sumed point, like at s = So,). The peak elect,ric field in a 
cavity is c/T p = 0,~ (no acceleration), h is the harmonic 
number and L is the length of the reference orbit [2]. 

The space charge forces depend on y’ for nonuniform 
charge distribution. The terms FX;‘,,(~, FTL(g, FZZ($ and 
F,,(y?j describe the self field space charge forces and will be 
defined later. 

II. EQUATIONS OF MOTION 

In a matrix form the equation of motion of a particle of 
rest mass rno and charge e in a linear lattice in presence of 
space charge effects and coupling writes 

y” = A(s, ?7) ii (1) 

with g’ = (;c, pr, z! pz, u, q) where 

pz = p2 I’ - H(s)r (‘2) 

p, = /3” 2’ + H(s).72 (3) 

and 

Al,2 = A+j = /3-2 

III. SPACE CIIARGE FORCl<S 

Bunched beams of ellipsoidal shape wit,h nonuniform 
charge density in the ellipsoid are considered. The three- 
dimensional model of the bunch is a nest of i?; concentric 
ellipsoids (numbered frown t.he inner t,owards the out.er) 
whose shells (each of sufficiently small thickness) are as- 
sumed to have a uniform charge density. 

Synchro-betatron coupling other t,han by space charge 
forces will be neglected. Thus the twist angles O,,, and QZ,, 
of the bunch with respect to the c axis in the x-g and 2-u 
planes can be ignored. 

The force acting on a particle in t.he nt,h layer can be 
obtained from the expressions for the pot.ential of homo- 
geneous ellipsoids. Assuming t,hat the longitudinal di- 
mension is much greater than the t,ransverse dimensions 
(y& >> El, E2)> tl ie component,s of the t ra.nsverse space 
charge force in the nt,h layer in a rotated coordinate sys- 
tem (2, E, a) parallel t,o the half axes EI,,~, E2 ,,,, E,,, of 
the nested ellipsoids are (in the laboratory system) 
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x41,3 = A24 = H 

A2,1 = -p2 (I<; + g + H2 - &z(f’)) 

A2.3 = 114.1 = ,o” (IV + Fzz(y3) 
.JI~,~ = -.45,1 = Ii, 

A3,, = Ad,2 = --ET 

r44,3 = -92 (fi; - 9 + ~2 - F,,($j 

Ad,6 = -As,3 = I\-, 

‘45$ zx p-2-,-2 

27rheP 
As,s = ~ 

EnL 
cosy-&+ -s,,) + F,($ 

F; = &l;jj.,l,u)j. (5) 
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F,” = zI;(&i,u)u 

with the approximation 

II”(it, 2, u) = 

(‘3) 

E 2,n 
Pn E,,, + Ez,n 

(7) 

Similar expression hold for FF and 1; provided that .? 
replaces ;C in Eq. 5 and El,i is interchanged with E2,i in 
Eq. 7. Further 

I;(?, 2, u) = 

C (Pi - Pi+l) 

i=l 

w (Pi + Qi,n) + 

o,* 

(8) 

with 
Eo,i + 

Pi = In 

Qi,n = In 

where pi is the constant charge density inside the ith layer 
and Ic~,~ is the largest root of the equation 

2 ‘f2 d 

ET,, + ki,n + Ez,i + ki,n ’ Ez,i + ki,, = 
1 (11) 

which depends on the location (g.,Z, 0) in the layer. An 
approximate mean value for Izi,, is obtained by taking the 
average of Eq. 11 over the volume of t,he shell. This approx- 
imation means that I;, Z?, 12 keep constant values within 
the nth shell. Thus the nonlinear character of space charge 
forces will be approximated by piecewise linear functions 
in the N ellipsoidal level layers. 

The space charge force components with respect to the 
(2, Z) axes become, using Eqs. 5-6 

with 

F,” = m.oc2j?2y (F,“x + F&t) (12) 

F,” = moc2@y (Fgzx + F:‘r) (13) 

F” = 
e 

ICI! ~om0c”py2 
(I: cos2 02, + I,” sin2 8:,) (14) 

F,“, = 
e 

c0moc2/?2y2 
(I; sin2 Sz, + 1; ~0s’ 8FZ) 

F” = 
e 

IL eorno~~/?~y~ 
(I: - I; ) sin 6:, cos 19,“~ 

(15) 

(16) 

where S;, is the twist angle of the nth bunch layer with 
respect to the x axis in the X-Z plane. 

Hence, the space charge terms F==(f), F,,($, F,,(y3 
and F,(yT in Eq. 4 are constituted of the piecewise ap- 
proximations F,“,, F,“, , F,“, and F,“, for n = 1 . N. 

IV. SOLUTION OF THE EQUATIONS 

For a particle with coordinates (z~ Z, g) lying in the nth 
ellipsoidal shell, Eq. 1 can be linearized so that its solution 
can be written in the form 

f”(s) = M”(s, so) ?F(so) (17) 

where A~J”(.s,so) is the transfer matrix and cn(so) is an 
initial vector. 

Although a rigorous symplectic thin lens approximat,ion 
for the transfer matrix has been established [l, 21, the sim- 
pler commonly used thin lens linear approximation (non 
symplectic) is considered here because it yields in practice 
similar results 

M”(s + As, s) = 1+ As An(s) (18) 

Here A”(s) is the matrix A(s) in which the space charge 
terms are replaced by their piecewise approximation. 

Let $!(so) (/c = 1.. .6) b 1 e inearly independent vectors. 
Then the following vector spans an hyperellipsoid in the 
six dimensional phase space x-p-z-p,-a-q by varying the 
angles ‘9, x,b, &2,53 PI 

?7"(sO;~,x,&*~2,~3)= 

cos’pcosx(~;(so) cos 61 + fy (so) sin 61) + 

cos cpcosx (fg(s0) cosS2 + fTf(s0) sin 62) + 

sin 9 (fz(so) cos 63 + ft(s0) sin 6s) (19) 

The projections of the hyperellipsoid onto the t-z, P-U, z- 
u and x-p,, r-p,, a-17 planes yield the bunch cross sections 
for the nth layer (i.e. the half axes of the ellipses obtained 
by projection of the hyperellipsoid) [2]. Hence the bunch 
envelope comprising, say, 95% of particles, will be given by 
the cross sections of the 710.95th layer. 

v. INITIAL CONDITIONS AND CIIARGE 

DENSITY FOR THE IIYPERELLIPSOID 

The transfer matrix over one machine turn must be 
periodic. This is the case if the hyperellipsoid spanned 
by (19) recovers its original shape after one revolution, 
i.e. if y’“(s0; cp, x, Sl,62,63) transforms after one turn into 
y’“(so; y, x, 61 - 27rQ;, 62 - 2~Q!j, 53 - 27rQ3n). Here Qy,2 
and Qg characterize oscillation modes which no longer cor- 
respond to pure horizontal, vert,ical and longitudinal mo- 
tion. However they are still identified with the transverse 
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machine tunes and the synchrotron tune respectively. The 
periodic condition involves the following computational 
steps (n = 1 N, j = 1,2,3): 

l Find the spectrum of the revolution matrix (eigenval- 
ues must be complex of module unity) 

M”(s0 + L, SO) iTr(s0) = e -2inQ” -n 
J “j (so) (20) 

l Normalize the vectors v’jn(so) and forrn 

(i7i”)+(so)~iY~(so) = 2i (21) 

J-- E?(SO) v'jn(sO) = ~~j-l(sO) - ifzj(sO) (22) 

where S stands for the unil symplectic matrix. 
The quantities 27?(so), Qy and cr must be computed 

iteratively because the revolution matrix depends on its 
eigenvalues and eigenvectors. In the first iteration the 
space charge forces are ignored and the values c; 2 3 are I ! 
derived from a system of three nonlinear algebraic equa- 
t,ions defining the boundary of the beam cross sections at 
injection 

~f,,z,u = fz,z,cJ(iitr(so)>” ‘, !7i%o,, f ;“, CK $7 (23) 

and for the subsequent ellipsoidal level layers 

c? = r2 c” J n J (24) 

where it,, Inca and xc,, are the areas of the elliptical pro- 
ject,ion of (19) onto the corresponding phase planes, and 
13, is ohtrained from t#he initial charge distribution. Eqs. 23 
are solved for the case of beams inject.ed with no twist. 

In the limitming case of negligible space charge forces and 
no coupling between the synchrotron and betatron oscil- 
lations and between the betatron oscillations themselves, 
cr2 and ty are approximat,ely equal to t,he transverse and 
the longitudinal emittances respectively. 

The init.ial charge distribution p(x, p, 1 Z, pZ, (T, ~7) occu- 
pies the six dimensional ellipsoid spanned by (19). Assurn- 

ing a charge density with ellipsoidal symmetry, this hyper- 
ellipsoid can be transformed into an hypersphere so t,hat, 
charge dist,rihution p(F) only depends on t#he radius ? = 
dm, wit.21 r2 = 5’ + z2 + a2 and v’2 = &2 +pz2 + ij2 
(the bar means that the values are normalized) [3]. IIence, 
since the charge density is constant on any hypersphere of 
radius ?, the distribution ~(7.) in t,he real space is obtained 
by integration of p(~, r’) over r’. 

Thus a nest of h: concentric spheres in the 2-Z-e space 
(of density p(y)) can be derived from a family of AT circles 
of radius ?,, (of density p(p)) by projection onto the T axis, 
yielding a family of segments of length r,, (the outer circle 
has a radius l’,~ = 1). If two consecutive circles have radii 
F, and pntl close to each other, the local charge density 
pn(F), arid so frl(r), can be assumed uniform. 

Denormalizing the six dimensional phase space vari- 
ables yields a nest of concentric ellipsoids which can be 

used as a model for the bunch. A Ga.ussian clistribu- 
tion has been chosen to represent the charge distribut,ion 
P(XIPZ> 2, pL, u, ~j), yielding by projection a Gaussian dis- 
tribution in t,he real space. Uniform charge density in the 
real space is also considered as a limiting case [2]. 

VI. CONCLUSION 

A simulation code has been written and was used to 
study the effects of space charge self fields at 1 GeV (kinetic 
energy) injection into the PS for the present high intensity 
beam delivered to the SPS (20 bunches, each of 1012 pro- 
tons, 55 ns long (at 4u), 1.3 MeV ha.lf energy spread and 
normalized emittances 6: = 50~~172, 6: = 25pm (at 2r)). 

Both Gaussian and uniform charge distributions have 
been used for the simulation. The particle bunch was sliced 
into 8 ellipsoidal layers. The tune values (without space 
charge) are Qo,~ = 6.217 and Q0,2 = 6.361. Fig. 1 shows 
the tune spread in the PS for a Gaussian charge density 
within the bunch. When a uniform charge densit,y is con- 
sidered the calculated tune shifts are AQ1 = -0.147 and 
AQ2 = -0.214. The ca.lculat,ed tune spread has IIO prac- 
tical effect on beam performance as no significant beam 
losses or bearn blow-up ha.ve ever been observed for t.his 
intensity. 
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Figure 1: Distribution of incohererlt trlnc at 1 C;rV in ttle I’S 
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