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SUMMARY 

A high current beam of subrclaLivistic ions accelerated in 
an induction linac is predicted (in some circumstances) to 
exhibit unstable growth of current fluctuations at high 
frcquencics (v - 100 MHz). The instability is driven by the 
interaction between the beam and accelerator modules at 
frcqucncics close to a cavity resonance. The extent of unstable 
growlh depends on features of the coupling impedance, beam 
paramctcrs, and total pulse and accelerator lengths. Transient 
and asymptotic analysis is presented. 

Induction Linac Model 

We Lrcat a cluster of beams drifting at velocity v, with 
line charge density h and current I = h-v. It is assumed here 
that all the bcamlcts (iv - 16) effectively act in concert so that 
i\ and I are the total values and v is the common velocity. 
The continuity equation, using laboratory frame variables (z,t) 
is: 

ah - +?L-0 
at az . (1) 

The beam cluster is trcatcd as a cold, I-d, non-relativistic 
fluid. An externally imposed field Eex and a smoolhed 
longitudinal field E, induced by interaction of I with the 
acceleration modules, acls on v: 

&+v$=~(E+E~~) 

Neglected in this model are velocity spread and a direct space- 
charge force proportional to (7?&z. These are significant 
stabilizing features at the high frcquencics treated here, so the 
calculation may hc considered pessimistic. The purpose of the 
present work is to delineate the phenomena of the longitudinal 
instability wcuring in heavy ion induction linacs, and to guide 
fulurc study. The analysis is similar to that given by V. K. 
Ncil( 1) for rclalivistic clcctron beams. 

The equilibrium beam drifts at constant velocity vo, so 
the total cquilitvium field (Eo + EF) vanishes. Ecluilibrium 
currcm IO and line charge density Xo arc, in gcncral, 
fu~~c~ior~s of the rzkndcti time T = I - z/vo. Howcvcr, they are 
Ukcn to hc: constanl for the duration of Ihe pulse (0 < z < 71,). 
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Let Eex have a small additional component which acts at 
z = o and therefore perturbs Ihe beam: Eex = EgX + V(t)8(z) , 
From eqns. (1) and (2) the resulting perturbed beam variables 
satisfy 

&+aI,=, 
at az ’ 

~+..p(E, +vqz)) ) (4) 

I1 = 3.0 Vl + V,,?L, . 

Module Response 

The beam-gencratcd field E I is induced by by the passage 
of the return current (-I*) through the module impedance Z. 
If we assume the driven form I1 - exp (-iot), with induced 
field El(w), then impedance is 

z(W) = -E,(o)/r, , (5) 

Specifically, we treat an isolated module resonance charac- 
terized by a parallel L-R-C equivalent circuit: 

c a*E, aE1 a1 ~+L~+EL=-.2. 

a: R at L at 
(6) 

The circuit parameters are related to measured resonance 
features; let R be the real impedance peak (units of Sl/tn in 
the smoothed field model), occuring at angular frequency wo. 
and resonance width is &I) = we/Q at 71 c/o of maximum IZI. 
Then we have 

C = Q/%R (F-mj, LC = cl,;? (7) 

The impcdancc formula for gencrul (complcs) u is 

I-io)C:-l’m’=- R 
R io)L I 1-iQ[$-%) ’ 

18 

Typical resonance paramctcrs of interest for Ihe Heavy Ion 
Fusion application arc vU= oo/2~ = 30-300 MH/., Q = 
10-100, and R = 100-1000 Q/m. 

Beam Frame Emations 

11 convenient to use the rctartlcd time variable ? = t - z/v0 
and z instead of the laboratory frames variables t and z. 
Then oclns. (3) and (3) bccomc 
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aI1 a 3bv, -..-.-=-- 
aZ at VI, ’ 

(9) The solution f; satisfying the initial conditions (14) is 

av1 -=- ,qv” [El + 6(z) V(T)] . 
aZ 0 

We eliminate vl to obtain The inverse transformation is 11 = & 
I- 

h 

dw e-iox I 1 . (18) 
.-a 

a”~, a -=- K* C [El + S(z) V(T)] , 
a22 as 

(11) with all singularities below the real w axis. 

Asvmrxotic Growth Formulas 

where 

Equation (6) becomes 

(12) The general character of resonant growth can be determined 
by the saddle point method. The form of II, given by eqn 
(18) is 

(13) 

The natural scale frequencies for z and ‘r are K and 
wo. Generally the scale magnitude won - 300 is much larger 
than Kz - 10. Eqns.(ll) and (13) describe strongly coupled 
oscillations in both r and z, which exhibit growth in both 
variables. We expect large growth in 7 will be produced by 
an cxtcrnal perturbation V(z) which contains any appreciable 
content near the resonant frcqucncy wo. In cqns. (1 l)-(13), K 
may bc a function of 2, however a numerical trcatmcnt would 
then bc rcquircd. Henceforth K is taken to be constant. 

Intrinisic singular$ics arc located at the complex resonance 
values (poles of F ), 

w=+w-iw,$!Q, (21) 
where 

Saddle points arc located at the six roots of the equation The perturbation V(z) is assumed to turn on within the 
beam pulse at some z = 2. > o. The structure of the coupled 
equations cnsurcs that perturbed quanatities may be consis- 
tcntly assumed to vanish outside the zones z 2 ‘to , z > o. 

dw f(w) exp(g> , (19) 

with 
g = -iwr + wFKz . (20) 

General Solution by Lanlace Transformation The integration contour in cyn (19) can bc dcformcd to pass 

Taking EI and I1 ,to vanish for (5 <z. , z < o), we 
through the saddle points, and the dominant contributions to 

find from cqn. (11) the mltial conditions at z = o+: 
II are produced at thcsc locatons for sufficiently large z and 
‘r. To simplify the saddle calculaton let 

II (o+) = 0, yo+, =%Z. 
L 

Performing the Laplace transformation 

(14) 
u=w/w+ie, E=uI,/~?&Q (23) 

assumed small compared with unity. Then cqns. (20) and (21) 
become (at the saddles) 

.- u(u-ie)2 

( ‘i 

g = -IKJT (l-i&U) ’ 
(24) 

f;, E^1 = d~e’~(11 ,Er) , (15) 
0 (~*-1)~=(~)2(1-iCu))*. (25) 

we get 

a”< 
- = - K*Ciwgr = ( wFK)~ c 

(16) 
, For mode growth associated with the module resonance we 

as expect u - + 1, which requires & >> Kz, Eqn. (25) gives 

with r = (0.2 - co2 - iwcOdQ)rR. u*=l+r Kzm i I ~ ( l-i&u)“s , (26) 
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whcrc r is any cube root of unity. The small quantity E = 
(2Q)-l is a fixed constant. However we shall find that at peak 
growth for fixed z, (Kz/%) is of order &3/2. To solve eqn 

(gr)max = P--j 1 3 2 3’2 Q’” Kz = moq,/Q = 10.5 . 

(26) by an expansion in the small pnramcters we formally This calculated total growth [exp(lO.5) = 363001 is large 
ddine 

ps’ Kz / wt)2” 
enough to be of concern, even though the initial disturbance 

E ’ 
(27) V(z) may be very small in the unstable band. A small rms 

velocity spread (Av/v, = v,(~J,,Jw~~,, = .0022) would be 

and regard p as of order unity, The resulting expressions for 
sufficient to eliminate growth, but would constrain the focal 

u and g are, assuming u = + 1, 
spot radius achievable in a fusion reactor. 

DisDersion Relation 

(28) A Laplace transformation in both 5 and z on eqns 

+..I- (‘9) (11)-(13)yie1d Il-ld~~dQ~e-i(W+~), (34) 

For unstable growth the relevant cube root of unity is where the dispersion relation is 
r = (a i-1)/2. We get, keeping only terms through order E: 

D(w,n) = -K2w2 + iwfi2/CZ(w) (35) 
g, = J$z- (Gy3 (by - OLZ , (30) 

24 
= (d - cd + iwoo/Q) ( R2 - K2) - KY& - iwdQ) . (36) 

pi=-&+3 G’B 4 ( ) Wm. (31) The latter form of D clearly indicates that a pair of strongly 
coupled resonances are present, and appear symmetrical1 
Q = ~. A growth formula, valid for near resonance iz 1 

wh$n 
At specified z the maximum value of gr is readily = K , 

found from eqn (30): may therefore be obtained from eqn. (30) by interchanging 
oOz with Kz. For Kz >> w02 we have 

02pqYy$~~]~ (32) gr = (3W4) (cwy (Kz)‘” , (37) 

gi = -KZ + (3/4) (&Tp” (ET)“. (38) 
At this point p = 4/G, which is of order unity, as assumed. 
The maximum growth factor is The roots of the dispersion equation D(w,n) = 0 can be 

(gr),,,,, = (Ty ($)l” Kz . 
used to find the growth in z for given real W; we find for the 

(33) imaginary part of R 

ADDlication to Heavv Ton Fusion Qi = [* (IZl - Zi)]ln 9 

The maximum growth is calculated here at a medium 
with 

energy position in a fusion driver, with ion paramete.rs (T = z = z + iz, =R/l + iQ (g - 211 
1000 MeV, m = 200 amu, q = l), and the typical pulse 

r L - 

parameters (I,, = lo3 A, zP = 500 ns.) For the module 
l+Q”($:r” 

rcsponsc we take w z 00 = 2~x10 s-l, Q = 30, R = 
300 Wm. Then we have The maximum growth formula eqn. (33) may be recovered 

from eqn. (39) for large Q by maximizing iZi with respect 
v. = .104c, A., = 32.2 j&/m , to driving frequency w. 

C = lO-9/2x F-m, K = .OlOO m-l . Reference 

At the pulse end Ws, = 314 and the maximum growth point Ul V. K. Neil, Interaction of the ATA Beam with the 

is TM030 Mode of the Accclcraling Cells, LLNL report 
UCID-20456,1985. 
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