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Analysis of Resonant Longitudinal Instability in a Heavy Ion Induction Linac*
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SUMMARY

A high currcnt beam of subrelativistic ions accelerated in
an induction linac is predicted (in some circumstances) (o
exhibit unstable growth of current fluctuations at high
frequencics (v ~ 100 MHz). The instability is driven by the
interaction between the beam and accelerator modules at
frequencics close to a cavity resonance. The extent of unstable
growth depends on features of the coupling impedance, beam
parameters, and total pulse and accelerator lengths. Transient
and asymptotic analysis is presented.

Induction Linac Model

We treat a cluster of beams drifting at velocity v, with
line charge density A and current I =2Rv. It is assumed here
that all the beamlets (N ~ 16) effectively act in concert so that
A and T are the total values and v is the common velocity.
The continuity equation, using laboratory frame variables (z,t)
is:

22 + iy =0 . M
Jdt oz
The beam cluster is trcated as a cold, 1-d, non-relativistic
fluid. An externally imposed ficld E®* and a smoothed
longitudinal ficld E, induced by interaction of I with the
acceleration modules, acts on v
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Neglected in this model are velocity spread and a direct space-
charge force proportional to dA/dz. These are significant
stabilizing features at the high frequencics treated here, so the
calculation may be considered pessimistic. The purpose of the
present work is to delincate the phenomena of the longitudinal
instability occuring in heavy ion induction linacs, and to guide
future study. The analysis is similar to that given by V. K.
eillD for relativistic electron beams.

The equilibrium beam drifts at constant velocity vy, so
the total equilibrium ficld (E() + ng) vanishes. Equilibrium
current  lg and line charge density Ao are, in general,
functions of the retarded time 1 =1 - z/vy, However, they are
taken to be constant for the duration of the pulse (0 <t < Ip).
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Let E€X have a small additional component which acts at
z = o and therefore perturbs the beam: E®* = E§* + V(1)8(2) .
From eqns. (1) and (2) the resulting perturbed beam variables
satisfy
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I = 2o V1 + VoAl .

Module Response

The beam-generated ficld Ep is induced by by the passage
of the return current (-1,) through the module impedance Z.
If we assume the driven form I} ~ exp (-iwt), with induced
ficld E{(w), then impedance is

Z(w) = -E (0)/1; . (3

Specifically, we treat an isolated module resonance charac-
terized by a parallel L-R-C cquivalent circuit:

2,
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The circuit parameters are rclated to measured resonance
features; let R be the real impedance peak (units of €/m in
the smoothed field model), occuring at angular frequency wg.
and resonance width is Aw = 0p/Q at 71% of maximum {Z!.
Then we have

C=Q/w:R (F-m), LC = w2 Q)
The impedance formula for gencral (complex) © is
-1
Z = .]..‘j(l)(_'f-._]_) =__ R (8)
R il 1-iQ (2 - %)
0

Typical resonance parameters of interest for the Heavy lon
Fusion application are vo= 0g/2r = 30-300 MHz, Q =
10-100, and R = 100-1000 Q/m.

Beam Frame Equations

It convenient 1o use the retarded time variable T=1t- z/vg
and z instead of the laboratory frames variables t and z.
Then eqns. (3) and (4) become
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We climinate vy to obtain
I3
L= 9 REC[Er+ 8(2) V(r) an
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where K2= 9 (12)
mvZ C
Equation (6) becomes
2
(a_+0b_a_+0)g)E]=-Li 13)
ot Qax Coa

The natural scale frequencies for z and t are K and
. Generally the scale magnitude ®qgT ~ 300 is much larger
than Kz ~ 10. Eqns.(11) and (13) describe strongly coupled
oscillations in both T and z, which exhibit growth in both
variables. We expect large growth in 1 will be produced by
an external perturbation V(t) which contains any appreciable
content near the resonant frequency wg. Inegns. (11)-(13), K
may be a function of 1, however a numerical treatment would
then be required. Henceforth K is taken to be constant.

The perturbation V(1) is assumed to turn on within the
beam pulse at some T =1g > 0. The structure of the coupled
cquations cnsures that perturbed quanatities may be consis-
tently assumed to vanish outside the zones t 2 15,2z 2 0.

General Solution by Laplace Transformation

Taking E1 and I, tovanishfor (1<1g,2 <0), we
find from eqn. (11) the initial conditions at z = o+:

ol oV
I (0+) =0, —-(0+) =9c—l‘2’—-~- (14)
oz mvs gt
Performing the Laplace transformation
(11 , El) =J dreier (I] ) El) ) (15)
we get
2 ~
~ 2~ 16
9l __kCiok ={erkf'T | (16
0z2
. 2 . 172
with I'= (Uﬁ - - IOXOO/Q) .

The solution I; satisfying the initial conditions (14) is

. (@_\2) (i) Sinh(@IKz) an
mv3 {wl%)
The inverse transformation is 1 = i[ dwe I, . (18)
with all singularities below the real ® axis.

Asymptotic Growth Formulas

The general character of resonant growth can be determined
by the saddle point method. The form of Iy, given by eqn

(18) is
I ~[ do f(w) exp(g) , 19

with
g =-iwt+ lKz. (20)

Intrinisic singularities arc located at the complex resonance
values (poles of I'7),

(D=ia‘i0)0/2Q, (21)
where
o= V1-1/2Q)7 .
Saddle points arc located at the six roots of the equation
=2 ekl Poloron29) . @)
0w

The integration contour in eqn (19) can be deformed to pass
through the saddle points, and the dominant contributions to
I1 arc produced at these locatons for sufficiently large z and
1. To simplify the saddle calculaton lct

U=/ ®+ie, €=0.20Q (23)
assumed small compared with vnity. Then egns. (20) and (21)
become (at the saddles)
g= -l‘—(D’E U(U-IE) (24)
(1-ieu)
2
1)’ = (lf__l) (1-iew)) . 25)
ot
For mode growth associated with the module resonance we
expect u== 1, which requires wt >> Kz, Eqn. (25) gives
L\23
uz=1+ r(Q—) (1-ieu)™*, 26)
wt
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where, r is any cube root of unity. The small quantity € =
(2Q)’1 is a fixed constant. However we shall find that at peak
growth for fixed z, (Kz/wt) is of order £3/2. To solve eqn
(26) by an cxpansion in the small parameters we formally
define
_ Kz / o
p=efod

@7

and regard B as of order unity. The resulting expressions for
u and g are, assuming u=+1,

22 .
1£(E_£
2 8 3

+ e, (28)
3 e
g = -t {1 +E (—EE - i) +€? (_Bg_f iBr) +} . Q9)

For unstable growth the relevant cube root of unity is
r= (Y3 i-1)/2. We get, keeping only terms through order &:

s = 33 ()3 (Kp)?? - T (30)
g ==k (wx)” (Kz) 0
gi=-6t+%(6x)l/3(Kz)m. G1)

At specified z the maximum value of g, is readily
found from eqn (30):

O=aai’=6[€:( ')m-s}.

gk

(32)

At this point B = 4/¥3, which is of order unity, as assumed.
The maximum growth factor is

(gr)max _ (E)SIZ (@)1/2 Kz .

2 o

(33)

Application to Heavy Ton Fusion

The maximum growth is calculated here at a medium
energy position in a fusion driver, with ion parameters (T =
1000 MeV, m = 200 amu, q = 1), and the typical pulse
parameters (Ig = 103 A, Tp = 500 ns.) For the module
responsc we take 65(,x)0=27r><108 st, Q = 30, R =
300 Q/m. Then we have

vo =.104¢, Ao =322 uC/m,
C=10"/2n F-m, K=.0100m?!.

Atthe pulse end @7, =314 and the maximum growth point
18
Zzgﬂﬁ(_z_ﬁ)yzzmz 236m,
K Y3 Q K

(80max = (\f3'/2)3/ 2 Q" Kz = wot,/Q = 10.5.

This calculated total growth [exp(10.5) = 36300] is large
enough to be of concern, even though the initial disturbance
V(t) may be very small in the unstable band. A small rms
velocity spread (Av/voz Vol8)marn/WoZmax = .0022) would be
sufficient to eliminate growth, but would constrain the focal
spot radius achievable in a fusion reactor.

Dispersion Relation

A Laplace transformation in both 1 and z on eqns
(11)-(13) yield

I ~ de d0F@ girea) | (34)
D
where the dispersion rclation is
D(@,Q) = -K2a? + 100 /CZ(w) (35)

= (- B+ i0wQ) (@ - K - K{Z - o) . (36)

The latter form of D clearly indicates that a pair of strongly
coupled resonances are present, and appear symmem'callgf wh%n
Q =0, A growth formula, valid for near resonance £”=K",
may therefore be obtained from eqn. (30) by interchanging
T with Kz. For Kz>> o 1 we have

gr = (3V3/4) (@1)? (Kz2)'? | (37)
g = Kz + (3/4) (1) (K2) . (38)

The roots of the dispersion equation D(®,£2) =0 can be
used to find the growth in z for given real ®; we find for the
imaginary part of Q

12
Q = [K22Cw (|z|-zi)} , (39)
with .

. o . W

oo 0l )

= r+lzx= i
]+Q2(_@-9_1)
o O

The maximum growth formula eqn. (33) may be recovered
from eqn. (39) for large Q by maximizing Qi with respect
to driving {requency .
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