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Abstract

Application of Liouville theorem for the calculation of
emittance of particle beams through a special electrostatic
arrangement using the separation of phase space by means
of a diagonalizable structure of the underlying Hamilto-
nian.

I. Introduction

It is demonstrated, that in a special electrostatic arrange-
ment the z-dependence (direction of beam) of the Hamilto-
nian can be neglected. The Hamiltonian separates into two
parts describing the degrees of freedom of the perpendicu-
lar motion of the particles. This allows using Liouville’s
theorem to calculate emittance. A formula is easily derived
by taking into acount the additive structure of the Hamil-
tonian (constant partial phase space). A simple method is
presented for measuring the emittance.

I1. Liouville theorem and the con-
stancy of the phase space

lons represent a system consisting of n particles correspon-
ding to f degrees of freedom in the phase space. Hence
their total mechanical state is described by F' = nf gene-
ralized configuration coordinates and F generalized con-
jugate impulse coordinates, therefore by a point in a 2/-
dimensional space in which the fundamental laws of me-
chanics read:
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H = H(q", px) is the Hamiltonian,

R=1[". . ./ p'. )" eRr¥ | (2)

q; = —0H/0q; and p; = 0H/0p; are canonical conjugated
variables. Given H = H(R,t) from (1) follows

where V# is the Hamiltonian vector field representing the
time derivative along the trajectories in the phase space.
Due to the fact that the Hamiltonian vector field V# has
always vanishing divergence in phase space R/ for ar-
bitrary phase space function F = F(R‘,t), it follows
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By using Reynold’s transport theorem and Gauss theorem
results Liouville equation [1]:
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5 ( )BRQ( ) 35 35 {e. H}, (5)
do
Tj7“0

g(ﬁ,t) d¥ R permits the probability of finding N particles
in the volume of the phase space d¥ R at time t. Now
eq.(5) for 3 degrees of freedom is represented in the follo-
wing form

///f// o(q1, 92, 93, p1, P2, pa) dq1 dga dgsz dpy dpa dps =

= const. (6)

The local distribution, i.e. angular and energy distribu-
tion, immediately results from the angular distribution of
the degrees of freedom, corresponding to each of the 3
space axis, the coordinates z, y and z. and the classical
impulses mz, my and mz.

Assuming the following that z, p; and y, p, are the
conjugate canonical variables, secondly that the total
energy and the impulse remains constant in z-direction and
thirdly o(z,pz, y, py) factorizes as follows o(z, pz) - oy, py)
in the (z,y)-plane, the invariants

// o(x,p;)dx dps = const., /f o(y,py)dydpy = const.
(M

can be derived by means of (5). But the classical impulses

] - = ) ms and my are not always canonical impulses conjugate
i ﬁ H(R t) =V(R,) (3) to the classical coordinates z and y.
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Moreover, eq.(2) shows that the conjugate canonical va-
riables enter into the general expression of the Hamilton

H=) pigi—L

related to the corresponding Lagrange function

function

(8)

L =T(qs, q:) — (g:)

where e.g. L could have the form [2]

L=-m2\J/1— @ +e(v-A)—ed (9)
describing the motion of a charged particle in electroma-
gnetic fields with T = potential energy, 7" = kinetic energy,
® = scalar potential, 4 = vector potential. Example (9)
shows that the presence of the term (7' fi‘) leads to a more
complicated relation between the canonical impulses pz, py
(conjugate to x,y) and the 3 classical impulses mz, my,
mz thus preventing us from specifying invariants similar
to (7).

Supposing that the total Hamiltonian splits additively
(]

H(B1y, Riay) = Hi(Riy)) + Ha(B2y) (10)

where R¢yy and f(4) are collections of conjugate canonical
variables. The time derivative of the projected volume of
the phase space is given as follows:

d 1\71 ung
"’&; / d R(l) - 0

prig(t))n,

(1)

The integration in eq.(11) applies to the projection of the
total phase space domain g(¢) to the corresponding plane.
In addition, the following conditions must be fulfilled

{/(f) C [()N . ﬁ(l) & Ile \ ﬁ,(g) S RN2 . N(1)+1V(2) =N

The validity of (11) can be proven in analogy to (4), for
example for the projection in the y, p,-plane, as follows

il
dit

P91y, ny)—plane

dydp,| =0

To achieve (7) appropriate coordinates with the property

// o(z,p,)dzdp, = const. {(12)
are introduced, so that from equ.{(12)
//// olz.pr,y, py) dzdp, dy dp, = const. (13)

is derived, where the z-component of the impulse of the
particle is assumed to be constant.

I1I. The emittance space and the
emittance area

In the previous chapter it is demonstrated that the equa-
tion of motion of the trajectories (with time indepen-
dent fields), relating six independent variables is overdeter-
mined, one of them beeing taken as a parameter.

Now starting from the general form of the canonical con-
jugated coordinates p; = dg;/dt the corresponding im-
pulse in the z-coordinate

de dz dzx ; ,
pr=— = ———=p, ¥ Rpy T

dt dt dz (14)
is derived in a field free space. When the requirement,
which has already been substantiated, p, = py = const. =
1 is inserted, then z’ is the canonical coordinate conjuga-
ted to x and has the meaning of an angle projection onto
the (z, z)-plane. This angle measures then deviation of
the path of the particle from the z-axis. Therefore, the
(2, pz )-subspace of the phase space can be replaced by the
(z,z')-space and respectively also (y, py)-subspace can be
replaced by (y, y’)-space thus leading to the emittance spa-

ces B Fy.
Fronteau called such spaces “double degenerated phase
space” because of p, = po,po = 1. Explicitly stated,

E, coordinized by z and z’ the emittance space for the
z-direction and E, (coordinized by y and y’) for the
y—direction respectively. The area that arises from both
emittance spaces E is named emittance area Iy and Fyyr,
see also Fig.1d.
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Figure 1: Schematic representation of the emittance
area (a-d) and for measuring the emittance (e)
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IV. Electrostatic arrangement
and emittance area

For the potential of an electrostatic arrangement consisting
of three lenses one can use the approach [1]

Spal

V=3 g

AKR (15)

There are U/ - voltage between two lenses, A - distance

between them, R - radius of iris and g - component of cy-

lindrical coordinates. Now the potential is z-independent.

The corresponding Hamilton function of a particle in
this system reads

2 2

Pz p.'l . 1

H= "+~ 44¢lU A —

am T am TV A B

(«* + ) (16)
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Eq.(16) shows that the canonical impulse conjugated to
is independent of y. Therefore the equation of motion in
any of those directions is dependent only on its respective
direction coordinates and not on the other coordinates.
Eq.(16) permits to derive the subsequent equations of mo-
tion

d?z . d%
+u)él':U ) Y 2

dz?

2 _ 3qUAm
© T4 p3p?

)

P: = po (17)
In order to examine the emittance area the initial condi-
tions

dy dz

z=z2p=0 = y=yo,z =20, 5= =0

dz ’_d-;:O

(18)
lead to unique solutions of the subsequent special forms

Tp,(2) = 2o cos{wgz) , Yp,(2) = yp cos(wpz)

(19)

Ty, (2) = —zpwosin(wez) , Yy, (2) = —yowo sin(woz)

and represent ellipses parametrized by z (Fig.1la) characte-
rized by the semi-axis xy, wxg and yg, wyo respectively. For
further investigations, we present a detailed treatment of
the emittance space £,/ . [t is proved below, if this calcu-
lation of emittance area within the beam guiding system
is adequate yielding a statement about the constancy of
emittance area and the goodness of the used approaches
with reference to the measuring apparatus developed for
this project (Fig le). This device for measuring the emit-
tance consist mainly of a Faraday cup. The cup is movable
in w—direction and picks up the current in z-direction.

In case of varying the impulse p from py to p’ = po+ Ap
the new orbital equation using the same initial conditions
(18)

Zpo+ap(z) = 2o cos(wo[l — 6]2) (20)

Ly 4ap(2) = ~zowo(l — &) sin(wo[l — 8]z)

also describes an orbit of an ellipse with a changed angular
velocity w’ = wp(l — &) (Fig.1).

Defining 6 = Ap/po as the ratio of the variation Ap and
the impulse py at the beginning, the subsequent emittance

area (Fig.1d)

4 i k
AFpp = | 20 —zqwll 0
zg —zowil(1-6) 0

=2|6| L 2wi  (21)

is evident and the above formula is valid for all p, pg <
» < (po + Ap) and where L = 24 has been introduced.
The term w?L equals f~!, f beeing the focal length of the
electrostatic lense. The increase of emittance area there-
fore reads

1 ;
AF.E.‘L" - ?2“511‘(2] = I‘L'O(rv‘zax)i 2 |6‘ (22]

where Zg(maz) = 2o and x;mu)

The difference of the angles

2
= zowjl have been used.

Az’ =z, 2 (L) — 2z, (L) (23)
can be expressed as
Az’ = zgwi L 26 (24)
so that i
Ay = 2B T BB T T T o (25)

as — a1

Tp =T COSpPE Ty =T COSP,

follows considering the geometry of the measuring appara-
tus (Fig. le).

V. Conclusion

For definite assumptions of technical relevance, the Hamil-
tonian of electrostatic devices is separable. In that case a
good approximation can be achieved with the assumption
7 > R regarding.

The assumption z > R is evident, for instance in the
accelerator-technique of nuclear physics the component
of focussing possesses a greater distance from the target
chamber. This statement is demonstrated in eq.(16).

Eq.(25) represents a stmple solution for construction of
an apertural measurement of the emittance.
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