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Abstract: The phase trajectories close

to  the parametric resonance and to the
nonlinear resonances of third and fourth
order, which play an important role in the

cyciie accelerators particle dynamic, are
investigated. The consideration is carried out
in the canonical variables X,Y relaled by a
simple way to the angle and the displacement
of the circulating particle with respect to
the reference orbit at a given accelerator
azimuth. The problem is reduce to the
construction of the phase trajectories
H(X,Y)=const, that are third or fourth order
surves and determine the mode of mofion in the
vieinity of the resonance. The phase
trajectories build-up is performed in the
Klein's perturbation methcd.

Introduction
The problems of nonlinear dynamics

play an important role in different fields of
the modern physics such as particle physics,

nuclear physics, plasma physies, quantum
electronics and, of course, in accelerator
physics. An excitation of nonlinear resonance

is widely used for particle exiraction from
eyclic accelerators [1] , action of nonlinear
resonances determines the dynamical aperture
of large accelerators and storage rings [2,3].
One of the most important problems in study of
the nonlinear oscillations is construction of
the trajectory of motion of wrepresentative
peints on phase plane and determination of
stable motion regions. In present paper a
geometric method of investigation of particle
motion at nonlinear resonances is developed.

General consideration

The equation of one~dimensional
particle wmotion in an accelerator in the
presence of a disturbance is the following

2

LE 4 9P = & £(Q,x,dx/dQ) . (1)
ap©
where =X the tiransverse displacement of the
circulating particle with respect to the
equilibrium orbit, v is the betatron
oscillation frequency, @ = 7 (ds/VB) is the

generalized azimuthal angle, f(Q,x,d=/dQ) is
the pericdic funciion in @ with period egual
to 2T, B is the betatron function. Taking the
smallness of the perturbation into account the
solution of the equation 1) can be
represenfted in the form

x = a(Q) cos[VQ + V()] (@)

with the amplitude a and the phase ( depending
on Q. For further analysis of the motion it is
convenient to¢ make the transformation to new
variables [4,5]
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X = a cos, ¥ = -a sing (3)

In this variables the zquations of particle

motion, take the canonical form

dx dH ay iH

W T Iv e - - x4
where H is the Hamiltonian. The particle
motion is mapped on the phase plane by the
H(X,¥)=consl trajectories.

Third order rescnance
The third order resonance V=q/3 1is

excited bty the suitable q harmonie of the
quadratic magnetic field (@, x,dx/8Q)=

—Aex cosqp - Bx",

of qubic magnetic field. The Hamiltonian in
this case has the following form [5]

A
H = ;gg(y3—3xzy>+ —%—(v-—%—)(x2+v2)+

B is the constant component

- Per®H? (5)

Leti us introduce the new designations

_ 2 £)
s = ¥ - V3x+——3—xo,
2V3
t = v + ¥3X + 5 %o (6)
V3
u =Y - —5Xg,
1€ q
where XO= —5—(v——§~)/A2, and in acco;dance
with the sign of the tune shift 6=(v——§—> it
takes positive or negative value. Taking (6)
into account one can cast (5) in the form
8B 16 4
o 2. 422 _ o 3
stu + r (XT+¥Y7)™ = y H 3 XO (7)
2 2
In general that is the equation of a fourth
order curve. In absence of the constant
compenent of qubic magnetic field (B=0) it
defines a third order curve. The phase
trajectories are specified by the equation
stu="n . (8)

il
4 XO“/Q is 2 constant. By

analogy with electrostatic one can call the T
quantity as charge [6]. Then the complete

where T = 16 H/A‘2
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inte twe domains: one
carrying positive charge 70, and other
carrying negative charge 7<0. The boundary
between these domains is the separatrix

phase plane splits

stu=0 |, (9)

3 3

on separatrix H:"§€ono' This equation i=

satisfied by the set ¢f three straight lines:

5=0, %t=0, u=o forming the =squilateral firiangile
at its intersection. The vertexes of this
triangle determine the position of three

unstable fixed points

2V3
1) X = 0, Y = - Xo;
3
3
2) X = —XO, Y = ———XO;
3
V3
3) X = XO’ Y = —?~XO.
2
The separatrix splits the phase plane into

regions of stable and unsiable motion. Let us
investigate the nature of the phase curves. It
is previcusly worth to note that each of the
straight lines s=0, 3$=0, u=0 divides the plane
into two half-plane having pesitive and
negative values of corresponding variables s,
t, u. In accord with this fact the sign of the
stu production is delermined. For a small T
value such that [N] < !XO’I the corresponding

place close 1o the
separatriz in {the domain defined by the nM
sign. It gives the qualitative technique for
raphiz build-up of the phase trajectories [7]
Fig.1, where XOFO). There is the largest

phase zIrajectories

4
(

X

Phase third order

adce, B=0.

rig. 1. trajectories at
reson

detachment of the curves from geparairix near

tc the fixmed points. In the central region
there are the close curves _contalned “<he
stable fixed points. At X" +¥V =R"% XO‘ the

phase curve
decreases as T)/R7.
the large distance
coordinate sy=tfem

digtance from the separatrix
At B neil equal o zeroe at
the center of the
X - term in (7))

propeortional to
determines the

dominates and
ide

sign the left-hand =i

of the =quation keeping it cconslant everywhere
outside of s=ome central circumference of a
large enough radius. This gives 2
coale=cence of the ceparatri s
Moreover there is combining of E o
bounded the sectors with M <pposite in sign o
B.
Fourth order rescnance
The fourih order rescnance V=gq/4 Iis

excited by the suitable q harmonic ,of the
qubic magnetic field f($,x,dx/d®)=-A3x’cosqw -
ij. The Hamiltonian in case has the
following form [4,5]
A -
- 34 eyl b
H = 75 (XT-6X"Y +Y )+

this

1<U_v%ﬁ>(xz+y2)+

It defines the phasge Irajectoiries to b
feurth order curves. These curves, ag
from {(10), are gymmetric aboutl both axes
H(X,Y) in (10) may be pepresented in The
fellowing form

£,(X,¥) I, (X,¥)=", SRR
2 1 2 ggn < Lo
£, = g7+ L o (trie, J{1+Dy o o

((1+D)Xd+(1+D)kiYi+
k.,
1
m = (1+k ) (1+D) o
where g is scale factor,

_ N 1/2
x,=2(6181/a)"%, &

k1k2=1. The equations

f1(X,Y)=O, fZ(X,Y)=O

are the second order curv
there are the uninters
trajectories. The inters
curves are real for D &
one has a couple

trajectories. The equation

1y

f1(X,Y) fZ(X,Y)=O (13)

determines the separatrix. And  mentioned
pointe define position of the figxed pointsz. Al
-1 & D &1 there are twe hyperbolae [4,5,8].
Let us consider in more detail 1the case 2 ¢
-1, when cur curvee are two ellipses (Fig.2).

1685
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The phase trajeciory bild-up may be performed
in "the =mall wvariation method" explained by
F.Klein []l. The product f1f2 is pesitive in

the piece of the plane lying within or outside
both ellipses; in four crescent pieces
belonging only %o one ellips it is negative
Por sma2ll T the phase trajectories ar
arranged c¢lose to the separatrizx in domain
defined by the T sign. This treatment, as on
can see, offers to seek the fizxed points
pesitions and to analyze its nature.

Y

Mmoo

X

Phase trajectories at fourth order
D < -1,

2.

Pig.
resonance,
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