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Abstract: The phase trajectories close 
to the parametric resonance and to the 
noniinear resonances of third and fourth 
order, which play an important role in the 
cyclic accelerators particle dynamic, are 
investigated. The consideration is carried out 
in the canonical variables X,Y related by a 
simple way to the angle and the displacement 
of the circulating particle with respect to 
the reference orbit at a given accelerator 
azimuth. The problem is reduce to the 
construction cf the phase trajectories 
H(X,Yj=const, that are third or fourth order 
curves and determine the mode of motion in the 
vicinity of the resonance. The phase 
trajectories build-up is performed in the 
Klein's perturbation methcd. 

Introduction 

The problems of nonlinear dynamics 
play an important role in different fields of 
the modern physics such as particle physics, 
nuclear physics, plasma physics, quantum 
electronics and, of course, in accelerator 
physics. An excitation of nonlinear resonance 
is widely used for particle extraction from 
cyclic accelerators [II , action of nonlinear 
resonances determines the dynamical aperture 
of large accelerators and storage rings [2,31. 
One of the most important problems in study of 
the nonlinear oscillations is construction of 
the trajectory of motion of representative 
points on phase plane and determination of 
stable motion regions. In present paper a 
geometric method of investigation of particle 
motion at nonlinear resonances is developed. 

General consideration 

The equation of one-dimensional 
particle motion in an accelerator in the 
presence of a disturbance is the following 

d2,1 + 71*x = & f(CQ,x,dx/d(P) 
d(p’ 

, (1 ) 

where x the transverse displacement of the 
circulating particle with respect to the 
equilibrium orbit, 
oscillation frequency,VQ 2" r (dtZTV@) 

betatron 
is the 

generalized azimuthal angle, f((P,x,dx/d(P) is 
the periodic function in CF, with period equal 
to *It, p is the betatron function. Taking the 
smallness of the perturbation into account the 
yclution of the equation (1 ) can be 
represented in the form 

x = a((@) cos[V$? + Q,!Cp)l (2 j 

with the amplitude a and the phase rC, depending 
on Cp. For further analysis of the motion it is 
convenient to make the transformation to new 
variables [4,51 

X = a cost/l, Y = -a sin9 (3) 

In this variables the equations of particle 
motion, take the canonical form 

dX JH dY dIi 
-=-J-y--, 

*(P -=-xi- ' dip 
(4) 

where H is the Hamiltonian. The particle 
motion is mapped on the phase plane by the 
H(X,Y)=const trajectories. 

Third order rescnance 

The third order resonance V=q/3 is 
excited Fy the suitable q harmonic of the 
quadsatic maqetic field f((P,x,dx/d(P)= 
-A2x cosq(p - Bx , B is the constant component 

of qubic magnetic field. The Hamiltonian in 
this case has the following form 151 

A2 H = &Y3-3X2Y)+ +(V-+)(X2+Y2)+ 

--$(x"+Y* )* . (5) 

Let us introduce the new designations 

26 
s = Y - 6x + yxg, 

t = Y + 6x + -yO' (6) 

vs 
u = Y - 9x0, 

86 
where X0= ++/A2, and in accordance 

with the sign of the tune shift 6=(V-$) it 

takes positive or negative value. Taking (6) 
into account one can cast (5) in the form 

8B 
stu + A (x*+Y2)* 

16 4 
= A H - 9 Xo3 (7) 

2 2 

In general that is the equation of a fourth 
order curve. In absence of the constant 
component of qubic magnetic field (B=O) it 
defines a third order curve. The phase 
trajectories are specified by the equation 

stu=r) , (8) 

where 11 = 16 H/A2 - 4 X03/9 is a constant. By 

analogy with electrostatic one can call the 71 
quantity as charge [6]. Then the complete 
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phase plane splits into two * domains: 5ne 
carrying positive 
carrying negative 
between these domains is the separatrix 

stu=o , (51) 

nn 

sat i 
s=o 
at 
tri a 

6 3 
ssparatrix H=xA,XO. This equation is 

sfied by the set cf three straight lines: 
t=o. u=o forming the equilateral triangle 

i+- ,.. intersection. The vertexes 0 f this 
ngle determine the posit ion of three 

unstable fixed points 

2 VT 
1) x = 0, y = - -x * 

3 0' 

VT 
2) x = -x0, Y = -x0; 

3 

6 
3) x = X0' y = -x 3 0' 

The separatrix splits the phase plane into 
regions of stable and unssable motion. Let us 
investigate the nature of the phase curves. It 
is previously worth to note that each of the 
straight lines s=C), t=O, u=O divides the plane 
inta two half-plane having positive and 
negative values of corresponding variables s, 
t, u. In accord with this fact the sign of the 
stu production is determiped. For a small 71 
value such that lrll C /XC,'1 the corresponding 

phase :rajectories place c 1 0 c‘ e t 0 the 
ceparatrix in the domain defined by the 71 
F 1gn. I: gives the qualitative technique for 
graphic b!u?ld-up of the phase trajec:ories [?I 
(Fig.1, where XC, b.0 ) . There is the largest 

X 

?ig. 1. Phase trajectories at third order 
resonance, B=O. 

detachment of the curves from separatrix near 

to the fixed points. In the central region 
there are the Close curves .coqtaine4 ,h e 
stable fixed pjoints. At XL +'J-=R- '., XbL ;t,e 

phase curve digtance from t h e separatrix 
decreases as 1)/R'. At B no‘: equal ',o zero at 
the large distance f r 0 !n trig center of the 
coordinate system R"3 X-,I,L term in (7 j 

proportional to (p=y~ )d dcminste,s an", 
determines the sign of the left-hand Fide 
of the equation keeping it ccnstant everywhere 
ou+,side of some central circumference f0 f '2 
large enough radius. Thiz giT?es rise t I?' the 
coalescence 0 f the Feparatrix brnnct:es. . . Moreover there i_c cnmblnlng cl‘ the brsz?hec 
bounded the sectors with ? ::pp~.>sitr in sign TV: 
B. 

Fourth order resonance 

The fourth order resonance U=q/$ is 
excited by the suitable q harmonic 30f the 
quhic magnetic field f(c$,x,dx/dQ)=-A3x cosq@ - 

9x3. The Hamiltonian in this case ha.? tt1 e 
following form [4,5! 

A? H = qy(X4-6X2Y2+Y4)+ $(;I-+ (X2+&& 

E 3 '2 --:x-+-y-- ) . 
2 

f '1 r: / 

It defines tile ghsse Srajert-,iri5,z tc, be II:* 
fourth order c~~rves. These c'urves, 9s <.>ll>ws 
from (IO), are symmetric atcnt bcth axe?. 
H(X Y) f l~ow~n~fo'l;~j may be represented in t;hr 
-0 7 b 

f, iX,Y) f> (x,-J-: , -'i3 i"' 1 

1 5 

*I 
= g(x 

2 2 
? g r! . . 

IiliY + 
A 1 

(I+;<,) :l+E: '.'I) ' 

f2 = g -I ( (?+D)X2+(1+D 

ki 
r= (l+k;j(l+D) 

1 

kiA 
sgnsIr. ) 

1 
(1+k 

x -) , 
i ) 'Z. 

x 4 48 

0 +;\-H 
? 

where g is scale fa-tar, 6 =I'-q.;4, "= L4B,'A:, 

Xo=2(6181/A3)1'2t k, I=l~-?+~i~Y~.I-D,:':~+rll, 
.- 

k,k>=l. Ths equati,c,n? 

f,(X,Y)=O, f,(X,Y)=O ( '! 2 ) 

are the second order curve e,q':stiInn. AtD 1 
there are the unintersecti:,g ^ 1 3 p 5 CL ~ilscr 
trajectoriss. The intersecting ' ;I c' 1 n t, c 1 %i;e f 
curves are real for D ". 1. H enz e ?~:a-? s-ict1 ? 
one kas a couple intersecting r) ,': c1 c e 
trajectories. The equation 

f,(X,Y) f2 (X,Yj=O (13 1) 

determines the separatrix. And mentioned 
points define plosition of the fixed points. At 
-1 E, D %I there are two hyperbaclae [4,5,P,l. 
Let us consider in more detail the case 3 
-1 I when c'ur curves ,are two eliipses (Fig.L?). 
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PAC 1991



The phase trajecsory bild-up may be performed 
"the small variation method" 

inKlein [I. 
explained by 

The product f,f2 is positive in 

the piece of the plane lying within or outside 
both ellipses; in four crescent pieces 
belonging only to one ellips it is negatrve. 
For smsll 77 the phase trajectories are 
arranged clr!se to the separatrix in domains 
defined by the 7 sign. This treatment, as one 
can see, offers t 0 seek the fixed points 
positions and to analyze its nature. 

Y 

Fig. 2. Phase trajectories at fourth order 
resonance, D < -1. 
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