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I. IIYIRODUCTION 

Transition comes when the differential of circulation time 
with respect to 6 = Ap/po, the off momentum parameter, is 
zero. This happens when the relative rate of change of speed 
/3 equals the relative increase in path length - when 
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Here C is the circumference of the closed orbit, ‘1 is the 
dispersion function, and 8 is the accumulated bend angle. 
Angle brackets c > represent an average over bending dipoles. 
Significant beam loss and emittance growth are expected in the 
Main Injector when Y = ‘yr, if nothing is done to ameliorate 
transition crossing[l]. Here we consider ways in which m 
can be modified for a short period of time, so that transition 
crossing is very rapid. Figure 1 illustrates unipolar and 
bipolar “transition jump” schemes. In order that the passage is 
graceful, it is necessary that 

i y - “t’T 1 > 0.65 (2) 

for as long as possible[2]. Hence the unipolar scheme shown 
needs a lattice with An = - 1.3, and the bipolar scheme 
needs two lattices, with AL\)LT = It 0.65 . 

A major design issue is, how “gross” are the changes of 
other single particle properties of the lattice? Another issue is 
simplicity of design. How strong are the perturbation 
quadrupoles, how many are there, in how many families? 
What is the tracking performance? Two prototypical schemes 
are compared, ‘matched” and “unmatched”, referring to whether 
or not a large dispersion wave circulates when the perturbation 
quads are turned on. Results presented from an MI-15 lattice 
analysis are valid for the contemporary MI-17 lattice, with 
small changes (except where noted). 

II. MATCHED AND UNMATCHED CONFIGURATIONS 

A small quadrupole perturbation q shifts the tune by 

AQH = a$ljBd (3) 

where B is now a beta function. Downstream from the 
pertmb&on there is a free horizontal beta wave 
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with a phase advancing twice as fast as the betatron phase. 
There is also a free horizontal dispersion wave, given by 
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advancing in step with the beta&on phase. 
Most of the Main Injector circumference consists of four 

FODO cell arcs, with a phase advance per cell close to 90 
degrees. No betatron wave escapes one of these arcs if the 
perturbing quads are arranged in pairs, either with identical 
strengths 90 degrees apart, or with equal and opposite strengths 
180 degrees apart. Similarly, no dispersion wave escapes if 
identical strength pair members are 180 degrees apart, or if 
equal and opposite members are 360 degrees apart. Neither 
wave escapes if identical quads are arranged in groups of four, 
with 90 degrees of phase advance - one FODO cell - between 
neighbors. This is the matched ‘)“r jump scheme. There is a 
total of 48 such quadrupoles at focussing locations in arc cells, 
where their effect on ‘ye is the greatest. Essentially, these 
quadrupoles retune the standard arc FODO cell, changing the 
matched dispersion function. The change in ‘yr is first order 
in the strength of the quadrupoles. Unfortunately, a second 
family of perturbation quads is required in a dispersion free 
region, to compensate for the tune shift accumulated through 
the arc cell retuning. There is no need to avoid dispersion 
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Figure 1 Main Injector passage through transition with 
nominal parameters, including unipolar or bioplar jumps. 
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waves in the second family, so the quadrupoles are arranged in 
pairs, 90 degrees apart. In the MI-15 lattice there is only 
space for an effective total of 8 quadrupoles. (In MI-17 there 
is space for 16 - a significant improvement, as will be seen.) 
The strength of the second family is about 6 times the strength 
of the first, and with opposite polarity. 

There is only one family of 24 quadrupoles in the 
unmatched scheme, with opposite polarity members at every 
other horizontally focussing arc quadrupole[31. This is similar 
to the scheme in daily use in the Fermilab Booster [4-61. 
There is no global beta wave and no net tune shift, to first 
order in the perturbation strength. However, there is a large 
frost order global dispersion wave, while the average change in 
fi is only of second order. (In a pure FGDG lattice with no 
straights, flipping all perturbation quad polarities results in 
exactly the same lattice. The “polarity symmetry” is 
somewhat broken in MI-15, but the first order term in the 
variation of A)“r is still negligible.) 

1 2 3 4 5 
number 

Matched? 

Ahrr 0.0 

Population 1 

Population 2 

Strength 1 

Strength 2 

PH minbo 10.9 

PH max(m) 56.7 

Bv tib-4 10.9 

Pv -b-4 78.9 

bid-4 -0.12 

9max(m) 2.07 

YeS YeS 

-1.3 a.65 

48 48 

8 8 

-.055 -.029 

.334 .I59 

1.3 4.68 

432.7 81.0 

10.3 10.9 

83.5 80.1 

-1.75 -0.47 

4.61 2.64 

Yes No 

0.65 -1.3 

48 24 

8 - 

.03 1 .074 

-.157 - 

8.86 8.86 

97.5 65.4 

10.9 10.7 

80.3 82.0 

-0.3 1 -7.71 

2.29 9.59 

Table 1 Configuration and performance in various schemes. 
Quad strengths are relative to the regular FQDQ quad strength. 

III. LINEAR OPTICAL PERFORMANCE 

Table 1 compares the 5 cases of interest. It is implicit that 
the net horizontal and vertical tune shifts are negligibly small, 
of order 10s3, although they are not exactly zero in any of the 
cases. The table shows that the assumption that first order 
perturbation theory is adequate is not completely true for either 

scheme. Case 2 (matched. unipolar, AyT = -1.3) shows the 
largest strength, with a second family strength of one third of 
the nominal strength of an arc quadrupole. The optical 
solution is not acceptable, because the maximum horizontal 
beta function rises to 433 meters. In all cases the vertical 
beta functions are negligibly disturbed, since the perturbing 
quads are at horizontally focussing locations. The matched 
bipolar scheme (cases 3 and 4) causes much more modest 
optical perturbations - although they are still not negligible - 
with a maximum horizontal beta of 98 meters. It is expected 
that this situation would improve dramatically in the MI-17 
lattice, with twice as many quads in the second family, and 
with none of them placed back to back, as in MI-15. 

In the matched scheme (case 5). the minimum and 
maximum horizontal beta functions are disturbed by less than 
20% . However, the dispersion reaches extremes of -7.7 and 
9.6 meters, leading to a reduced dynamic aperture for off- 
momentum particles. This is especially painful at transition, 
when the momentum width of the beam is at its largest. 
Large dispersion swings also cause a large variation of m 
with momentum, raising the Johnsen time significantly[7J. 

IV. TRACKING RESULTS 

The dynamic aperture about a displaced closed orbit is 
found as a function of 6 = Ap/p using the code TEAPOT. 
The 6 range used, 0.0 to 0.01, is about twice the large 
total momentum spread expected for about 10 milliseconds, or 
1000 turns, around transition. Successive particles are 
launched with decreasing amplitude, in steps of 0.5 
centimeters, until a particle survives for IOQO turns at the 
“stable” amplitude. (Amplitudes are initially identical 
horizontally and vertically, and are scaled to hax in a FODQ 
cell). While it is clearly incorrect to include synchrotron 
oscillations, such a static model is flawed by not including 
ramping and transition in all three spatial dimensions. No 
appropriate code exist at present, 

Only those systematic dipole bend magnetic errors listed in 
Table 2 are included, according to the expansion 

hen = BOIL+I:bn(~)nI 
n 

The reference radius r0 in Table 2 is 1 inch - 2.54 
centimeters. Multipole values come from the Main Injector 
dipole design calculations[8-101 at a transition momentum of 
19.10 Gev/c, and a dipole field of BO = 0.237 Tesla. They 
are consistent with prototype measurementsr lo]. The 
sextupole field is dominant, due almost completely to eddy 
currents. Higher order eddy current effects and remanent fields 
are negligible. 

Results are shown in Figures 2 and 3 for two 
configurations: a matched ‘yr jump with An = -0.65 (case 
3 in Table l), and an unmatched n jump with AyCr = -1.3 
(case 5). The net chromaticities are set to zero in both. A 
straight line is fit to the data, with a slope dx/dS analogous 
to a dispersion if the aperture stop is a “brick wall”. The 
slopes (-2.7 meters in Figure 2 and -7.1 meters in Figure 3) 
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SOUlW b;? b4 b6 

(lo4 @ 1 inch) 

EddycXlrRnt 3.405 -.087 428 

Saturation .215 .184 .046 

TOTAL 3.620 .097 .018 

Table 2 Systematic dipole errors used for tracking. 
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Figure 2 Dynamic aperture versus momentum for a matched 
bipolar jump, Case 3 in Table 1. 

10~1I11 II11 ““~““1”“- 

0 0.002 0.004 0.006 0.008 0.01 

Momentum offset, Ap/p 

Figure 3 Dynamic aperture versus momentum for an 
unmatched unipolar jump, Case 5 in Table 1. 

are in fair agreement with the corresponding maximum 
dispersions quoted in Table 1 (2.6 and 9.6 meters). The 
matched scheme has a definite advantage in improved off- 
momentum dynamic apertme performance. 

V. CONCLUSIONS 

While neither the matched nor the unmatched transition 
jump scheme is entirely satisfactory as presented, either one 
could be improved and made to work well in the Main Injector. 

‘Ihe m scheme has simpler hardware requirements - 
only one family of perturbation quadrupoles is required. 
Betatron functions and tunes are negligibly affected (in an ideal 
lattice without errors). Its disadvantages stem from the large 
induced dispersion wave, and from the second order dependence 
of Am on perturbation strength. The 9.6 meter maximum 
dispersion decreases the dynamic aperture significantly 
(although not severely) at large momentum offsets. 

The m&&xl scheme requires two quadrupole families to 
keep the betatron tunes unchanged. This leads to a Iarge 
perturbation strength that, in the worst case of a unipolar 
AYT = -1.3 jump, distorts the linear lattice almost to the 
point of instability. This problem is expected to be greatly 
ameliorated in the MI-17 lattice, with a factor of 4 decrease in 
maximum quadrupole strength. The behavior of the linear 
lattice in a bipolar jump of strength AYT = f 0.65 is 
reasonable, even in the MI-1 5 lattice. 
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