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Abstract 

The equations of motion of a charged particle in a 
travelling-wave accelerating cavity are those of a harmonic 
oscillator with a varying restoring constant. This restor- 
ing constant is negative for transverse motion, resulting in 
diverging trajectories. The restoring constant is positive 
for longitudinal motion. For many years the only solution 
to the equation in the program TRANSPORT [l] was for 
massless particles. The WKB approximation of quantum 
mechanics yields a very accurate solution for massive parti- 
cles. It allows both the amplitude and the wave number of 
the trajectory to vary as the cavity is traversed. Solutions 
are approximately 30 times more accurate than previously 
published. Comparisons are made with numerical integra- 
tion. 

1 Introduction 

The original derivation of the transfer matrix for the 
travelling-wave accelerator cavity was for electrons. It as- 
sumed an ultra-relativistic beam in which the mass of any 
particle was negligible compared to its kinetic energy. For 
many years this ultra-relativistic approximation was the 
only option in the computer program TRANSPORT. [l] 
People who wanted to design proton or ion beams con- 
taining accelerating cavities had to work with a very bad 
approximation. 

In the 198’7 edition of this conference, Hurd and McGill 
[2] (henceforth referred to simply as “Hurd”) pointed out 
the need for a representation of an accelerating cavity for 
massive particles. They also provided a representation 
which was a substantial improvement over what was pre- 
viously available. 

In the travelling-wave accelerator cavity, both the ampli- 
tude and the wavelength of the transverse motion changes 
as the particle is accelerated. The wavelength of the trans- 
verse motion is not the same as the wavelength of the accel- 
erating field. Hurd approximated the solution by holding 
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the wavelength constant and letting the amplitude vary. 
About the same time the present author produced a solu- 
tion where the wavelength varied and the amplitude was 
held constant. The two solutions were of comparable ac- 
curacy. An exact solution was also derived by this author 
using Runge-Kutta integration. The two solutions differed 
from the exact solution by about one percent. 

It is desirable to have a solution which satisfied two cri- 
teria: (1) It is accurate to the number of decimal places 
which are printed out in the transfer matrix by TRANS- 
PORT. (2) It longitudinally segments to the accuracy that 
the transfer matrix is printed by TRANSPORT. Previ- 
ously, the accelerating cavity for massive particles was the 
only element in TRANSPORT for which longitudinal seg- 
mentation was not exact. 

The WKB approximation of quantum mechanics [a] al- 
lows both the amplitude and wavelength of the motion to 
vary as the particle is accelerated. It is an approximation 
which may be iterated to any level of accuracy. We found 
that a single iteration was sufficient to produce the desired 
accuracy. The discrepancy from the exact solution was re- 
duced from the two previous approximations by a factor 
which ranged from 20 to 200, depending on the numbers in- 
volved and the specific matrix element. Below we give the 
analytic derivation of the expressions and make compar- 
isons with numerical solutions produced by Runge-Kutta 
integration. 

2 Transverse Motion 

The transfer matrix elements are referred to the stsn- 
dard six coordinates as used in TRANSPORT. They are 
x, x’, y, and y’ in the transverse plane, and f and 6 in the 
longitudinal direction. The quantity f describes the lon- 
gitudinal separation between two particles as a function 
of distance along the reference trajectory. The quantity 6 
is the fractional momentum deviation from the reference 
particle. 

In the description of the equations of motion we shall 
follows Hurd’s paper. [2] [4] [5] We are unable to improve 
on his presentation. We shall also employ his notation. 
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The electric and magnetic fields are assumed to be con- 
stant over the length of the Mcelerating cavity. They are 
approximated then by: 

and 

E, = ~AEcoJ$, E* = 4(v,p,A -=--)AE8i4 (1) 

Be = *(*)AE~~w$ 

Here AE refers to the maximum possible energy gain of 
the cavity, and 4 to the synchronous phase of the parti- 
cle. The energy gain of the synchronous particle is then 
AEcor& The wavelength of the rf field is X. The qusn- 
tities 7 and p are relativistic factors and c is the speed of 
light. The subscript “8” refers to the synchronous particle. 
The charge of the particle being accelerated is q. 

In the derivation we shall also use a quantity q which 
is the product of 7 and p. The additional subscripts “0” 
and “f’ refer respectively to the initial and final values of 
the quantities to which they are attached. The length of 
the accelerating cavity will be L. The rest energy of the 
particle is m2. 

The expressions for the fields lead to the first-order equa- 
tion for the transverse motion of the particle: 

Q=w (5) 

We are assuming that the rate of energy gain with dis- 
tance is uniform over the accelerating cavity. This means 
that 7 changes uniformly with distance and its derivative 
for the synchronous particle is given by: 

y - A;:‘:k (6) 

The integral It may then be evaluated by a binomial ex- 
pansion. ‘Ibhing out the constant factor &!, .we have: 

J,’ 3 = -$$A7 - t~@w’ (7) 

-+(A# + @+r)‘l ,. 

where A7 = 7#j - 780 (8) 
&,rJ#j+ = (F+gsq$Tz , L (2) 

The WKB approximation yields solutions for the trans- 
fer matrix elements as follows: 

RI1 = RSS = (E) + [cosh(&) (3) 

RI2 = RS4 = ‘&$)fsinh(l;) 

Rtl = fis = t[+$- - y]coah(&) 
r),,‘l*. 

+[(z)‘q - $$+itah(l,) 
‘1.1 l r 

Ra2 = R..,r = f$$$s’nh(“) + ($j$co,h(&) 
,J ‘0 

where (4 

3 Longitudinal Mot ion 

We first formulate the equations of motion in the lon- 
gitudinal direction in terms of the particle energy W, snd 
its phase 4. The synchronous energy is W, and the syn- 
chronous phase is 4,. The deviations of a given particle 
from these quantities are given by AW and A4. The first- 
order equations then become: 

AE~O~A~ d%W = 
(9) 

4$4 =‘* AW 
A v:wmes 

The quantities used are related, in first order, to the 
standard TRANSPORT variables by: 

f=gA~$ snd &- IH 
?. - iq w. (10) 

The WKB approximation yields solutions for the longi- 
tudinal transfer matrix elements 8s follows: 
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Rsr = ~[(+044) 

+:%,+c$,+ $$Wf)l 

Rse = - ‘1, A,f3~in#,(q[(~)‘%f 
P. PA Lmc’ 

-(~)~%.14f) 

-[gg$ + Jzl;+a(I~)) 

l t ‘I*) 

Ilas = -3 j&-pm UWf) 
‘1.r 

%a = (~)t~[““(“) - &+(I~)] 

Here If = Jo ‘$G 

and QL=~Q 

4 Comparison of Results 
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Numerical comparison of the values of the transfer ma- 
trix elements derived from Runge-Kutta integration and 
from the old and new versions of TRANSPORT. The ex- 
smple used is from Hurd’r article. The initial energy is 
100 MeV, the energy gain is 3.19 MeV over a length of 
290 cm, and the synchronous phase is 30 degrees. There is 
some slight discrepancy with the exact values 8s printed in 
Hurd’s article, which is probably attributable to rounding 
error in tslring the parameters of the accelerating cavity 
directly from his article. 

Numericcrl Transport Transport 
Element Integration (Old) (New) 

RII = Rss 1.197 1.0 1.197 

RIG = Rar 0.307 0.286 0.307 

&I = &a 1.386 0.0 1.386 

Raz = h4 1.179 0.973 1.179 

R66 0.653 1.000 0.653 

R68 2.059 0.0 2.060 

R66 -0.281 -0.026 -0.281 

&a 0.624 0.997 0.624 
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