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[. INTRODUCTION

We present here the results of numerical calculations of
the longitudinal coupling impedance of a thin iris colli-
mator in a beam pipe. The calculations are performed
using an analytic result derived in a previous note!. The
impedance is calculated as a function of frequency (ke/27)
and inmer and outer radius (r = b and r = a). The results
are presented by plotting the admittance as a function of
k(a — b) = kaz for different = (a — b)/a. Comparison is
made with the expected behavior of the admittance in the
small iris limit {(z < 1).

[I. ANALYTIC RESULT

We now summarize the derivation of the analytic result
given in the previous research note!. We began by writing
the electromagnetic fields as the sum of a source term plus
transmitied and reflected modes in the beam pipe. The
fields were then matched at z = 0 (the axial location of the
iris) to obtain an integral equation for the discontinuity in
the axial electric field from one side of the iris to the other.
Finally the following variational form was constructed for
the admittance

oo f: rdr ‘f: v g(r) g(r") K{(r,7)
2.V (k) = - : - ;o (D)
[fy rdrg(r) tn(a/r)]?

is a trial function proportional to the disconti-
, and A (r,7") is the kernel
integral equation, given by

where 4(7)
nmty in the axial electric field
of the
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(2)
Here p; are the zeros of Jo(w) and
Fia = (K2a® = pHY? = —j(p? = k2a®)Y?, (3)

The solution to the iutegral equation was obtained by
expanding the discontinuity in magnetic field in terms of
the complete set Iy (op,r) in the interval b < r < a,
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where
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juuas Yl(O'm'l“)“- Jl(O'm'f') (4)

and where the eigenvalues o, satisfy Fi(o,b) = 0. The
final result for the impedance was

=3 3P . (5)

m m

where Z, = 120m ohms is the impedance of free space and
the m, n element of the symmetric matrix £ is given by

2,2 2,2
o.,a g,a

‘2~rb' J1 p, .
P = ka2 Z J2 p,) ot a?—p? . 02a? — p?’ (6)

Truncation of the series in Eq. (6) is not expected to sig-
nificantly affect numerical accuracy, since the result was
obtained using the variational form in Eq. (1).

[TI. SMALL IRIS LIMIT

[t is easy to show from the variational form for Z,Y (k)
that!

J Aa

Zoy( ) k(a_‘b)ﬂ

ZoGk) + jZoB(k) = g»ka ~

is the limiting form for the admittance for a small iris (r <
1,ora—b < a). Here A is expected to be weakly dependent
on ka and of order 1.

The small z approximation in Eq. (7) has two interest-
ing features. The first is that G(k), the real part of the
admittance, is independent of the geometry of the obsta-
cle. The second is that B(k), the imaginary part of the
admittance, is inversely proportional to the cross-sectional
area in the r — z plane where the field is significantly dis-
turbed by the iris (approximate dimensions a —b by a —b).
These features are the same as those encountered in the
case of a small convex obstacle in a beam pipe?, where the
corresponding result was

o 27 ja
2. (k)= 7 ka— i
Z,Y (k)= 7 ka A

(8)
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where A is the cross-sectional area of the obstacle We
speculate that these features are part of a more general
result which will also apply for a small iris of small but
finite thickness and possibly even general shape.

Finally we can also examine the high frequency limit for
a small iris where kax may be of order 1 or greater. The
form of the result can most easily be seen by taking the
corresponding limit in Eq. (6) where Ji(p;b/a)/J;(p;:) goes
over to cosp;r, the cquivalent 2-D result. The prediction
is then that zZ,Y (k) will be a function of the universal
variable kaz. The small kaz limit is that given in Eq. (7),
namely

" e A
;kal—-;—;_,ka::(l (9)

2 Z,Y (k) =

4

and the large kar limit can be obtained via Eq. (6), and

18
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kax

1IV. CONVERGENCE BEHAVIOR

The convergence of the analytic method was examined
with respect Lo truncation of the series in Fq. (6) and
with respect Lo the size of the matrix P. ‘I'o check the
convergence of the series, we set b = 0.9, a = 1.0 and chose
values for ka and n, where n x n is the matrix size. (Note:
throughcut the rest of this paper the length scale is chosen
so that a = 1.0). The values of ka used here were hetween
10 and 100, and n = 20,25, or 30. We then calculated the
admnttance for different values of i,,,4,, the maximnm value

of the index in Eq. (6). The rcal and imaginary parts of

the admittance were then plotted as a function of 1/i,,...
This procedure was repeated for different values of ka and
a. The resulting plots indicated that the convergence was
linear in 1/4,,45, which was the expectea behavior. This
allowed for a simple linear extrapolation to estimate the
error 1n the admittance due to the truncation of the series.
We determined that a value of 4,4, = 5000 would give an
error due to truncation of approximately one part in 10°
, which 1s neghgible in comparison with the error due to
finite matrix size (discussed helow). All calculations re-
ferred to throughout the rest of this paper were performed
HSINE T == 5000,

To determine the dependence of the calculated admit-
tance on matrix size, we let b = 0.9 and chose a value
for ka.  We then caleulated the admittance for n =
10,15,20,25, and 30. The real and imaginary parts of the
admittance were then plotted as a function of t/n. This
procednre was repeated for different. values of ka. The re-
sulting plots revealed a strong linear dependence on 1/n
as well as a dependence on higher-order terins in L/n, We
deteriined that a quadratic interpolation would give the
best results for the admittance, resulting in an error of no
niote thiau one part in 107

V. NUMERICAL RESULTS

The numerical results are presented in Figures 1-4.
Equation (9) suggests that #Z,Y (k) is primarily a function
of kaz for kax < 1. We therefore plot 22,G (k) (Figure 1)
and kaz?Z,B(k) (Figure 2) versus kaz for 2 = 05,.1,.3.
The plots do show the behavior expected from Egs. (9)
and (10). In Fig. 1, we plot the line with slope 7/2 and
the horizontal line with ordinate =#; it is then easily seen
that the calculated values for G(k) are consistent with Eqs.
(9) and (10). The fact that the curves in Figs. 1 and 2

Figure 1: Real part of the admittance (multiplied by z)
vs. kax for small z.
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Figure 2: Imaginary part of the admittance (multiplied by
kaz?) vs. kax for small r.

liec very close to cach other suggests that for small 2, the
caleulated values for the impedance are universal, that is
a function only of kaz (except for an averall factor x). I
should be noted that Fig. 2 suggests the value of A in Eq.
(D) 1s close Lo 1.

If1gs.
z Lecomes of order 1.

*

3 and 4 explore the departure from Eq. (9 as
L Fig. 3 we plot o Z,G8) versus
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kar for z = .05,.5,.7, and .9. The curves show roughly

the same oscillatory behavior as in Fig. 1, in the sense
that the minima and maxima occur at the same locations.
As cxpected, as z increases the curves depart significantly
from the result for small z.

Vigure 50 Real part of the admittance (juultiplied by z)
va kax for large r.

In Fig. 4 we plot 27, B3(k) versus dax for 2 = .05,.5,.7,
We see roughly the same oscillatory behavior as
2. Tt <hculd be noted from Eq. (10) that for x
close to Loand large kae. Bk will be small compared to
C(ky and the impedance will be approximately real. The

and 9.
in e 2

cateulated values are consistent with this conclusion.
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Figure 4: Iinaginary part of the admittance (imnltiplied by
z) vs. kazx for lrge x.
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