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Abslracr 
One way of synchronizing the SSC Low Energy Booster 

with the Medium Energy Booster is by matching the longitudi- 
nal phase of the designated RF buckets of two machines 
throughout acceleration to a pre-programmed trajectory. This 
makes the synchronization predictable in advance. The model 
associated with the phase-locking is time-varying and model 
parameters arc subjected to disturbance due to errors in the 
bending magnetic field. Also the disturbance could be due to 
other feedback loops such as a B-field loop or a beam phase 
loop in the system. The measured phase error between the two 
reference waves may not be accurate. Hcncc in this paper WC 
have shown the design of a Sliding-Mode controller for such an 
application. In the absence of measurement errors and paramc- 
Icr uncertainties and with no disturbance, the controller rcduccs 
10 a classical gain feedback. Due to the general approach we 
have adopted in synthesizing the controller, the techniques can 
be applied to existing synchronization schemes. 

I. INTRODUCTION 
For extraction of beam from one accelerator to another, a 

synchronization loop of the type shown in Figure 1 can bc used. 
This would involve synchronizing the beam frcqucncy or the 
RF signal of the low-energy machine with an external rcfcrcnce 
source. The phase difference between the beam and the refcr- 
cnce source is used to correct the input frcqucncy of the low 
cncrgy machine. The reference source could bc a separate fixed 
frequency oscillator driving the high power RF system of the 
higher energy machine while the synchronization process is 
under way. Phase synchronization is obtained when the phase 
error between the reference source and the beam frcqucncy is 
made equal to zero. A simple design of such a feedback system 
consists of a state feedback gain k, as shown in Figure 1. Apart 
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Figure 1. Synchronization Loop. 

from the synchronization loop, it is quite normal to have other 
feedback loops such as a beam phase loop or a B-field loop pro- 
viding a small correction function to the variable frequency 
source. The B-field loop is not able to give full indication of the 
correction required because of measurement inaccuracy in the 
field. Hence the field error would act as disturbance to the sys- 
tem. Under those circumstances, the feedback controller, k, will 
not be able to drive the phase detector output to zero since the 
state feedback loop cannot handle external disturbance on the 
system. In this paper we show the synthesis of a sliding-mode 
controller using Lyapunov Stability Theory. This controller 
bchavcs very much like a state feedback controller when the 
gain associated with robustness is turned off. WC also discuss 
the crfccts due to Q of the RF cavity when we implement this 
type of controller. 

In our analysis we assume that the synchronizalion of the 
low energy machine can be done with the high energy machine 
throughout the acceleration. However, it can be switched on 
anytime during acceleration. Although the synchronization 
scheme in Reference 1 is different in its implementation from 
the conventional approach, in principle it is similar to Figure 1. 
Hence the feedback controller can bc applied to the convcn- 
lional phase-lock scheme. 

II. FEEDBACK CONTROLLER 
In the prcscnce of B-field errors, the phase detector output, 

6w, can be rcprescnted’ by the following equation with stan- 
dard notations. 

d&+f(f) “4. 2&f (I) 
dt = +T--qq (1) 

This equation is derived by ignoring the non-linear terms. For 
the present analysis the terms associated with GB(tj can be 
rcgardcd as the disturbance to the system. Under no distur- 
bance, a more gcncral way to write the above equation is in 
stllte-space form with variables (A(r)), {b(t)), (C(t)) as system 
matrices, ujlj as the control signal, y(r) the output signal, and 
x(r) the state variable as follows: 

X(t) = A(r)x(r) +b(f)u(r) 

L CL> = c (1) x (1) 
(2) 
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where 

x(r) = thy(r) 3 A(r) = 0 1 
li”T 

c(t) = 1, and u(r) = :6f(r) . 
b(f) = vR ’ 

The time variation of the parameters is represented by (t). 
For simplicity WC do not write the script (I) in our discussion. 
With disturbance, i.e., 6B(r)#O, Equation 2 becomes equal to 

i = b(u+ud), (3) 

where ud is regarded as the disturbance function and is equal to 

2Xfl6B -~ 
'd= hy2,x' (4) 

Also, let us assume that the measured state, x,,, has an error of 
xd , then 

Xm = x+x d p (-2 

whcrc x is the actual state as described by Equation 3. Now the 
sliding variable is defined with the measured state as follows. 

S = xm+a I 
I 
oxmdt. (6) 

In this equation CL is equal to the cigenvalue of the closed loop 
feedback system. Equation 5 is substituted in Equation 6, and 
resulting equation is differentiated with respect to time. The 
terms with 15 are replaced by Equation 3. After simplification, 
we get 

b-‘j = u+ud+b-‘rd+b-‘axm . 
(7) 

The justification for the choice of the stable feedback loop 
is based on the Lyapunov function candidate. There is howcvcr 
no unique Lyapunov function for this problem. A more suitable 
one could be as follows: 

V 1 -1 2 =?b S (8) 

The above function is positive bccausc the system paramctcr b 
is positive. Furthermore, from Lyapunov Stability Theory, a 
system of the type used in Equation 2 is stable when the time 
derivative of the positive definite Lyapunov function is ncga- 
tivc. Hence WC will differentiate Equation 8 with respect to time 
and substitute Equation 7 in place of 6-l C?. After simplification 
we get 

V = S[u+ud+gid+ga(x+xd) -hS] 

where g = b-’ 

Here we can assume that the disturbance signal ud can bc 
measured Since the measurement will not bc accurate, WC can 
consider this term to have a nominal mcasurablc term and an 
uncertainty function. When the measurements are not available., 
the nominal value will be zero. Similarly, parameter unccrtain- 
ties can be assigned to g and h. Thus we can write: 

Lid = Udo+AUd 

g = go + Ag 
(10) 

h = h” + Ah 

whcrc the terms udo, go and h” are thenominal quantities, and 
Au , As and Ah are uncertainties in the parameters ud, g 
an ,P h , respectively. Now, using Equation 10 into Equation 9, 
WC obtain 

ri = s[u+ (Ud ’ + Aud) + (go + Ag) “xm 

- (h”+Ah)S+gxd] (11) 

The control law, u, is defined in such a way that Equation 11 is 
always negative. Let it consist of the continuous part uC and a 
switching part us: 

u = uc+u s 
whcrc uC = -udo - g”c(xm + h”S and 

Ll (12) s = - (kxjXmI + kslSl + ko) sgns . 

The function sgnS in Equation 12 is a Signum function 
which has a value of either +l or -1 when S Z. 0 and S < 0, 
rcspcctivcly. The constants kx, ks, and k, in Equation 12 are 
sclcctcd so as to make the time derivative of the Lyapunov func- 
tion negative. With simple algebra we can arrive at the follow- 
ing condition. 

kx > sup1 Agcxl 

k, ’ SupI Ahi 
k, > W-‘lAUd + c+dl. 

(13) 

In Equation 13, ‘sup’ is pronounced as supremum, which is the 
maximum value of the function. The magnitude of the constants 
dcpcnds on the paramctcr uncertainties, but for stability they 
must satisfy Equation 13. The continuous part in the control law 
in Equation 12 holds the phase error zero, while at the same 
time the switching part introduces the robustness into the loop. 
Hcncc the switching part would take care of the disturbance 
rcjcction and parameter uncertainties. Equations 6 and 12 form 
the feedback controller, as shown in Figure 2. 

Figure 2. Sliding-mode controller. 

Under the condition with no disturbance (ud=O), no mea- 
surcmcnt error &=O), and no parameter variation, the gains 
k,=k,=ko=O. Also, h=O for a time invariant system, since a state 
f&back design is applicable to only such systems. Hence the 
state equation of the closed loop feedback becomes equal to 

X = bu = --ax, (14) 

whcrc a/b is now equal to the gain, k, shown in Figure 1. 
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III. ANALYSIS OF THE LOOP PERFORMANCE 
The performance of the feedback loop is analyscd by con- 

sidering the phase-locking between the Low Energy Booster 
and the Medium Energy Booster. The machine p‘aramctcrs 
shown in Reference 2 are used for the analysis. Figure 3(a) 
shows a plot of the decay of the phase detector output with 
respect to time, with the state feedback loop gain of k=2 and 5. 
The phase error converges to zero as expected. The profile of 
the phase error is, however, not important but it should be zero 
at the transfer time (ignoring all the fixed phase associated with 
the transfer line delays, etc). In an ideal situation, when there is 
no field error affecting the beam frequency, we would cxpcct the 
synchroni;ration to be good as shown in Figure 3. The loop pcr- 
formance deteriorates when y’ep magnitude of ud=l 1.6 rad/ 
set (for (6B) /B = 5 X 10 for the Low Energy Booster) is 
introduced to the system and is held high until the extraction 
time. The time response of the phase error is shown in Figure 
3(b) for this disturbance. It is clear from this figure that the sys- 
tem is not robust since the phase error is not held zero or at least 
to a tolerable value. It can be minimized by making the fecd- 
back gain excessively large which may lead to beam oscilla- 
tions. 
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Figure 3. Tie response of the phase error 
(a) without disturbance; (b) with dislurbance (step function at 42ms). 

In Figure 4(a) the loop performance is shown with the dis- 
turbance function for the sliding-mode controller. In Figure 4(b) 
the time response of the sliding variable S (Equation 6) is dis- 
played. From these figures it is clear that the product S&q is 
afways negative. Hence the loop is stable throughout the accel- 
eration. Also, the loop performance is very good under iicld 
errors compared to the usual gain feedback. To ovcrcomc field 
errors the feedback controller generates the compensating frc- 
quency shift to the oscillator. Since the constant k. controls the 
magnitude of the disturbance rejection, it would bc useful to 
have it set very high. Higher b may result phase oscillations for 
digital implementation with low sampling rates. However, the 
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Figure 4. (a) Tiie response of the phase error (with disturbance); 

(b) Time response of the sliding variable 

analogue loops have no such problems. When there is no 
parameter variation (Ag G 0 ‘and A?rh z O), the gains k, and k, 
can be negligible. Hence the switching part of the control input 
to the oscillator is mainly dominated by ko. Thus it is dominated 
by the system uncertaintics, whereas the continuous part acts on 
the initial phase error by the same principle by which the state 
feedback loop works. If the initial phase error is large, then a 
sudden frcqucncy shift of few khz would introduce beam oscil- 
lations. Hcncc a good solution would be to use the time varia- 
tion for appropriate gains including the eigenvalue, (x. 
Implementation of such a gain sequence would be easier for a 
digital synchronization loop. 

It is well known that the beam frequency does not change 
instantaneously when the oscillator is shifted by the control sig- 
nal, u. The time constant is governed by the Q of the cavity and 
the amount of dctuning caused by the beam current or a separate 
tuning loop. By assuming that the tuning error is well compen- 
sated, the equation between the beam frequency shift and the 
source frcqucncy shift is given by 

W W 

ti = -gL+$gui (15) 

where w,,, = resonant frequency of the cavity and 

‘i = ( 2x6fi) /h, with 6fi as the oscillator frequency shift. 
A block diagram representing Equations 2 and 15 is shown in 
Figure 5. The time response of the phase error is not very differ 

Figure 5.: System model with the Q of the RF cavity 

cnt from Figures 3 and 4 for the ratio (2Q) /wcav up to 1 mil- 
lisccond. 

IV. CONCLUSIONS 
Analytical trcatrncnt of the synchronization feedback loop 

is shown in this paper. Although the gain feedback loop is easier 
to design and implement, the simulation results show that the 
controller propcrtics arc not useful to handle changes in the syn- 
chronization conditions with B-field errors. The sliding-mode 
cont.rollcr shows robustness for such applications. For large dis- 
turbance rejection, the inherent oscillatory nature of the control 
signal can be overcome by introducing well-known saturation 
function. 
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