
OVERVIEW OF REAL-TIh/IE KERNELS AT THE
SUPERCONDUCTING SUPER COLLIDER LABORATORY

K. Low, S. Acharya, M. Allen, E. Faught, D. Haenni, C. Kalbfleisch
SSC Laboratory *

2550 Becklcymeade Ave.
Dallas, Texas 75237

Abstract

The Superconducting Super Collider Laboratory (SSCL)
will have many subsystems that will require real-time mi-
croprocessor control. Examples of such sub-systems re-
quiring real-time controls are power supply ramp gener-
ators and quench protection monitors for the supercon-
ducting magnets. We plan on using a commercial mul-
titasking real-time kernel in these systems. These kernels
must perform in a consist,ent, reliable and efficient manner.
Actual performance measurements have been conducted
on four different kernels, all running on the same hard-
ware plat,form. The measuremems fall into two categories.
Throughput measurements covering the “non-real-time”
aspects of the kernel include process creation/termination
times, int,erprocess communicat,ion facilities involving mes-
sages, semaphores and shared memory and memory allo-
cat,ion/deallocation. Measurements concentrating on real-
time response are context switch times, interrupt latencies
and interrupt task response.

I. INTRODUCTION

The process of evaluating real-time kernels from different
vendors can be a confusing experience. One is faced with
a plethora of performance numbers from the individual
vendors’ information packages, each displaying superiority
and advantages over their competitors. Each vendor in-
variably measures performance numbers in different ways
and on different hardware platforms thus making compar-
isons almost meaningless.

To compare and evaluate the different offerings, we pcr-
formed our own tests in a controlled environment. Prod-
ucts from the four vendors that met our base requirements
were tested on the same hardware platform. The platform
on which all four vendors is supported is the MVME147S-1
[l]; a VME based, single board computer with a 25MHz
68030 from Motorola. The four kernels selected, listed in
no particular order, were pSOS+ from Software Compo-
nents Group [2], VRTX32 from Ready Systems [3], Vx-
Works (~4.02) from Wind River Systems [4] and LynxOS
(~1.21) from Lynx Real-Time Systems [5].

It should be stressed t,hat these tests only provide quanti-
tative measurements of a particular syst,em’s performance.
Qualitative aspects such as development environment, de-
bug capabilit,ies, connectivity, compliance with industry

‘Operated by the Universities Research Association, Inc., for lhe U.S.

Department of Energy under Contract No. DE-AC02-89ER404M.

standards, technical support and host/target availability
will be addressed at the end of this paper.

Each test was execut,ed a number of times in order to
compute the average time to complete a test. The entire
measurement is then repeated several times to measure
the variance of this average value in the form of maximum
and minimum average values. Clock resolution, number of
iterations and cache conditions were identical for all four
kernels.

II. THROUGHPUT MEASUREMENTS

Throughput measurements are t,abulated in Table 1 and
what follows is a brief description of each test as it ap-
pears in the table. Idiosyncrasies of each kernel will also
be noted. An asterisk means that a particular test could
not be performed on that kernel.
1. Create/&lete Tusk This test measures the time it takes
to create and delete a task. A task deletes itself as soon as
it is created. The created task has a higher priority than
the creator, so the time quoted actually includes a create,
st,art, delete and two task context switches.
2. Ping Suspend/Resume Task A low priority task resumes
a suspended high priority task. The high priority task
immediately suspends itself. This measurement includes
two task context switches and t.he time it takes to suspend
and resume a task. There is no facility to suspend and
resume a task on LynxOS apart from using signals. So
this test was not, performed under LynxOS.
9. Suspend/Resume Task This is ident,ical to previous test
except that a high priority task suspends and resumes a
suspended lower priority task so that there is no context
swit,ching.
4. Ping Semaphore Two t,asks of t,he same priority commu-
nicate with each other through semaphores. Task A creates
a semaphore, gets the semaphore and then creates Task B
which blocks when it attempts to get the semaphore. Task
A then releases the semaphore which immediately unblocks
Task B. Task A then attempts to get the semaphore which
causes it to block until Task B releases it. The two tasks
then alternate ownership of the semaphore thereby causing
context switches. In our version of VxWorks, two separate
semaphores are required because round-robin scheduling is
not supported.
5. Getting/Releasing Semaphore The time reported in-
cludes the time it takes t,o get and immediately release
a semaphore within the same task context.
6. Queue Fill, Drain, Fill Urgent We first t,ime how long it
takes to fill a queue with messages and then we time how

U.S. Government work not promted by U.S. Copyrigh!-
1308

PAC 1991

Table 1: Throughput Measurements

1 Test Description I psos+ VRTX32 I LynxOS VxWorks
min/max/avg psec min/max/avg psec min/max/avg psec min/max/avg psec

Create/Delete Task 540/600/591 370/380/371 * 1378/1446/1423

Ping Suspend/Resume Task 120/130/128 140/150/142 * 174,‘182/177
Suspend/Resume Task 80/90/83 80/90/87 * 68/74/69
Ping Semaphore 210/220/219 230/250/239 390/400/397 228/234/232
Getting/Releasing Semaphore 63/64/63 55/56/55 73/76/74 33/34/33

1 Queue Fill I 40/50/46 (20/30/26 1 136/146/140 i 19/21/20 I
1 20;40;29 126/136/132 2ii25iaa I

mj175h7n
I
I 7Ci/76;72

I ---, -.- --I --I .-

270/290/278 43/48/44
152

4+40;40 26/30/27 , 860/900/867 34/79/57 366/376/371 67171168
Deallocate Memory 30/40/38 30/40/33 20/21/20 82/86/83

long it takes to drain the queue. Finally we repeat the
two tests with priority messages i.e. messages are sent to
the head of the queue. VxWorks 4.02 does not support
message queues but ring buffers with semaphores gives the
functionality of a message queue. LynxOS uses SysV mes-
sage queues with priority messages handled differently.
7. Queue Fill/Drain A single task sends a message to a
queue which the task immediately receives on the same
queue. There is no task context switch nor is there any
pending queue operations. The next test consists of t,wo
tasks with two queues. The two tasks alternate execution
by sending to the queue that the other is blocked waiting to
receive from. The total time now includes context switches,
queue pends and sending plus receiving a message.
8. Allocating/Deallocating Memory We measure the time
it takes to allocate a number of buffers from a memory
partition and the time it takes to return those buffers to
the partition.

III. REAL-TIME RESPONSE

The Motorola MVME147S1 includes an auxiliary timer
capable of gencrat,ing interrupts. A driver for the t,imer
was written for all four kernels. We quantify the real-time
response of the kernels by measuring the interrupt service
response and the interrupt task response. The interrupt
service response is the time it takes to execute the first in-
struction of an interrupt service routine (ISR) from when
the interrupt occurs. The task response is the time it takes
for a user task to resume execution from when the int,er-
rupt occurs. These measurements were taken over a large
number of times and t,he maximum, minimum and average
times are reported over the span of the test. The LynxOS
was the only kernel with a SCSI disk attached to it and
all kernels had network attachment,s and a real-time clock
as other sources of intcrrupt,s. The source of intcrrupbs
for the act,ual measurement was an auxiliary count,er on

the MVME147S-1 and the measurement task runs at the
highest priority.

Typically, a user task is blocked waiting for a semaphore
to be released by the ISR. The counter is programmed
to start counting up from a preset value to a maximum
value when it will generate an interrupt, resets itself to the
preset value and begins counting up again. Each count,
corresponds to 6.25 /IS. The ISR then immediately reads
the counter, which gives the interrupt, response time, and
then releases the semaphore. When the kernel reschedules
the user task after completion of the ISR, the user task
becomes unblocked, reads the count,er which t,hcn gives
the task response time.

IV. ORSE.RVATIONS

pSOS+ is a robust real-time kernel. Code can be devel-
oped on a number of different host platforms and down-
loaded to the target with the final application stand-alone
in ROM. Software Components Group (SCG) supports
pSOS+ on many target systems and provides source to
drivers making ports to specialized boards easier. The
XRAY+ debugger, based on the popular XRAY debug-
ger from Microtec [6] is capable of debugging target rcsi-
dent optimized C source code across ethernet or RS-232.
There is also an X11 interface which offers increased ver-
satility. In addition to task-level breakpoints, system-level
breaks can also be set at the syst,em-level; stopping all
tasks. This allows access to the onboard monitor and the
state of all pSOS+ objects. Optional components provide
UNIX-compat,ible network facilities and an ANSI standard
run-time library. Field support was excellent.

VRTX, from Ready Systems, provides a full comple-
ment of support software in addition to the VRTX/32 real-
time kernel. These include packages for I/O file manage-
ment,, nct,working, mult,iprocessing and a run-time library.
VRTX is supported on several commercially available tar-
get, boards with supporting documentation for porting

1309

PAC 1991

Table 2: Real-Time Response

psos+ VRTX32 LynxOS VxWorks
min/max/avg psec min/max/avg psec min/max/avg psec min/max/avg llsec

Interrupt Service Response vv W/6 13/88/13 6/56/6
Interrupt Task Response 100/169/163 169/343/169 163/262/175 119/319/125

VRTX to customized boards. Host support currently
exists only for SUN3/SUN4 with Sun’s own proprietary
windowing environment. The source level debugger (RT-
source) and the symbolic debugger (RTscope) can function
across an ethernet/serial link between the host and target.
Like pSOS+, breakpoints can be set at task as well as sys-
tem level. Tasks may be stopped and information about
kernel data structures displayed. A run-time shell with
dynamic linking capability is available for quick prototyp-
ing of applications. Although somewhat daunting to the
first-time user, VRTX is an extremely flexible and versatile
system to the initiated.

VxWorks includes a proven real-time kernel and a
UNIX cross-development package with extensive UNIX-
compatible networking facilities. Version 4.02 supports
only a preemptive priority scheduling kernel while V5.0
offers in addition round-robin scheduling. Version 5.0
also promises better performance with some compliance to
Posix 1003.4 Real-Time Extensions. VxWorks currently
is ported to a number of different target boards with the
host support fully implemented only on the SUN3/SUN4
systems. The source-level debugger is a remote debugger
based on the Free Software Foundation GDB [7]. The de-
bugger can only debug single tasks and currently does not
have an X11 interface. A symbolic debugger with some
system status displays is also standard. Dynamic loading
of objects over the network or from a disk together with
an interactive C-int,erpreter interface can be useful during
the development cycle.

LynxOS provides a complete Unix development environ-
ment. It can also be used for a cross-development system
like the other three kernels. It offers good real-time per-
formance with memory protection. LynxOS 1.21 currently
offers compliance to Posix 1003.1, SVID 4.2 and BSD 4.3
with future releases complying with 1003.4 Draft 9 (Real-
Time Extensions). It has been ported to four different
computer architectures. It has a Unix System V.3 binary
compatible interface built into the LynxOS kernel so that
binaries work under LynxOS and t,he standard Unix for
that architecture without modification. The debug en-
vironment consists of GDB as t,he source-level debugger.
There is presently no kernel debugger.

V. CONCLUSIONS

It has been our experience that a compile-download-
debug cycle common wit,h all the embedded systems is not
a major problem for us, Ethernet and NFS links make this
a speedy process.

It has become apparent the importance of compliance
with standards. Standards adherence makes code more
portable. We had to effectively rewrite all the tests for all
the kernels because of the interface differences.

Another conclusion is the importance of having a ma-
ture debugging environment, a source-level remote debug-
ger with a X11 Windows interface that can debug opti-
mized code is extremely useful. A good kernel debugger is
also very important, allowing the user to halt all tasks and
examine states of any individual task with relationship to
other tasks.

After we factor in the hardware differences between our
environment and the individual vendors’ test bed, most of
the timing results we obtain agrees surprisingly well with
the respective vendors’ published values.

Furthermore, we realize that differences in compilers can
contribute to the overall performance of the kernels and
will require further investigation.

Finally, the more hosts and targets that a given cross-
development, kernel supports, the more attractive it will
be, especially in a vastly heterogeneous environment like
the SSC.

PI

PI

PI

PI

151

F1

PI

References

Motorola, Inc., Technical Systems Division, P.O. Box
2953, Phoenix AZ 85062

Software Component Group, Inc., 1731 Technology
Drive, San Jose, CA 95110, (408) 437-0700

Ready Systems, Inc., 470 Potrero Ave., P.O. Box
60217, Sunnyvale, CA 94086

Wind River Systems, Inc., 1010 Atlantic Ave.,
Alameda, CA 94501, (415) 748-4100

Lynx Real-Time Systems, Inc., 16780 Lark Ave., Los
Gabos, CA 95030, (408) 354-7770

Microtec Research, Inc., 2350 Mission College Blvd.,
Santa Clara, CA 95054, (408) 980-1300

Free Soft,ware Foundation, 675 Massachusetts Ave.,
Cambridge, MA 02139

1310

PAC 1991

