Fast Risetime BLT Switches for Accelerator Applications*

G. Kirkman-Amemiya, N. Reinhardt, M. S. Choi, and M. A. Gundersen**
Integrated Applied Physics Inc.
50 Thayer Road
Waltham, MA 02154

Abstract

A fast risetime BLT switch which has demonstrated 17kA at 30kV with <60nsec risetime, 1.5kA at 20kV with <18nsec risetime, and up to 240Hz operation at 20kV, 7kA is reported. A tetrode triggering method is described which reduces risetime by eliminating prepulse behaviour.

I. INTRODUCTION

Several particle accelerator systems require repetitive switches capable of switching peak currents of several kA with short risetimes, in particular kicker magnets used to transfer particle beams from one section of an accelerator to another require current pulses that rise from zero to 100% in a time determined by the separation between particle bunches which can be only 10's of nsec in some applications. One particular application is the injection and extraction kickers for the low energy booster (LEB) of the superconducting super collider (SSC) which requires <50nsec 0-99% risetime. Another system with similarly strict risetime requirement is the kicker for the Stanford Linear Collider electron damping rings.

In this work we report the development and testing of a BLT switch which handles high currents with fast risetime yet is much simpler in construction and smaller in size than other switches with similar specifications. This work has concentrated on demonstrating the high current, risetime, and pulse shape ripple and repeatability capabilities of the switch, other aspects of switching such as jitter and repetition rate have also been investigated.

II. EXPERIMENT

The BLT switch is a hollow electrode low pressure gas discharge closing switch operating with an initially cold cathode that conducts high peak currents in a small diameter switch. Peak current capability is an order of magnitude larger than typical hydrogen thyratrons. The hollow electrode structure allows high reverse current to be conducted without damage to the switch. The switch can be optically or electrically triggered with low jitter and good pulse repeatability. Details of the physical characteristics of switch operation have been described in previous publications(2-4).

* This work supported through the SBIR Program by the U. S. DOE Grant DE-AC03-89ER80794 and DE-FG03-90ER80930, and SDIO/ONR contract N00014-90-C-0009. **M.Gundcrsen is with the University of Southern California.

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
ohm level two 12 ohm lines are used in parallel each made up of 2 nF ceramic capacitors per section and a solenoid wound using 1/4 inch diameter copper tubing on a 6.5 cm diameter air core with three turns per section giving ~300 nH/section, 11 sections are used to produce a ~600 nsec pulse. The main emphasis of our work was the performance of the switch, therefore in both cases the PFNs were not optimized for pulse shape, overshoot compensation or impedance matching. The PFNs used were sufficient to demonstrate the risetime and peak current capabilities of the BLT switch. A schematic diagram of the BLT switch and test circuit are shown in figure 2.

Figure 2. Schematic diagram of BLT switch and test circuit 1) anode, 2) cathode, 3) G2, 4) G1, 5) reservoir.

The BLT is triggered using two triggering electrodes, G1 and G2. A DC bias of +50 to 200 V is applied to G2 to enhance voltage holdoff capability, for triggering a pulse of 3-6 kV is applied to both G1 and G2. G1 can be used as a preionization electrode by applying a positive pulse of 1-5 usec duration prior to triggering G2. The hydrogen pressure in the switch is maintained at ~350 mtorr by applying 0.65 V, 2.6 A ac power to the reservoir. A higher reservoir current results in lower triggering jitter, delay and power dissipation but also reduces the voltage holdoff of the BLT, therefore an optimum reservoir current must be determined for each specific set of operating conditions.

III. RESULTS

The BLT switch has been operated at up to 17 kA at 30 kV with <60 nsec risetime in the ~1 ohmPFN and 1.5 kA at 20 kV with <18 nsec risetime in the ~6.5 ohmPFN. In both of these circuits the switch was not limiting the risetime. In a 1.25 ohm, 100 nsec PFN the BLT was operated at up to 240 Hz at 20 kV for short periods of time (minutes) and continuously (several hours) at 20 kV and 120 Hz for a total of >2 x 10^7 shots with no degradation of performance.

The current waveform obtained with the 1 ohm PFN is shown in figure 3. This current trace was obtained at 30 kV at 1 Hz. A slight load mismatch resulted in a peak current of about 17 kA, followed by current reversal; the rate of rise was 2.5 x 10^11 A/sec, the 40 section PFN results in a very flat pulse shape and the measured current pulse shows no ripple that can be attributed to the switch.

Figure 3. BLT switch current obtained in the ~1 ohm PFN at 30 kV, 50 nsec/div horizontal, 2.5 kA/div vertical.

In kicker magnet systems the current must rise quickly from zero to 100%, no prepulse can be tolerated. In early BLT switch tests we have observed a prepulse behavior where the current would rise slowly from 0 to ~15% before exhibiting a circuit limited risetime to full current, in some cases this prepulse was 50 to 100 nsec long. We have eliminated this prepulse effect through the use of a preionization pulse before triggering the main discharge.

The BLT-250-T was tested in a 1.25 ohm, 100 nsec PFN this pulse length was sufficient to study the BLT risetime. First electrodes G1 and G2 are connected together biased to +50 V and triggered with a short 3-6 kV pulse, the resulting waveform in figure 4a, shows a short prepulse rising slowly to 1 kA. To eliminate the prepulse a long 3-5 usec positive pulse is applied to G1 to initiate a preionization discharge in the hollow cathode space before triggering the main discharge with G2.

This triggering method results in the current waveform of figure 4b, showing no prepulse and a circuit limited risetime from 0 to 6 kA of <50 nsec. Triggering jitter obtained was <5 nsec. These results show the strong dependence of switch behavior on triggering circuits used. With careful design of triggering circuits jitter of 1 nsec or less should be obtainable.

Most accelerator systems are designed at higher impedance levels due to circuit size and component constraints. Results obtained with a 6.5 ohmPFN have demonstrated that the BLT performs well at these impedance levels. Figure 5a, shows the current obtained at 20 kV, the PFN was not optimized for pulse shape and therefore shows overshoot and ripple. The current shape does not differ greatly from computer modeling results(6) for a similar PFN indicating that the BLT switch is not limiting the performance of this circuit. Figure 5b, shows the current in this circuit with better time resolution to show the <18 nsec risetime. The current shows a smooth rise with no
prepulse. The rise from zero to top of overshoot is ~30nsec. The time from zero current to after the overshoot is still <50nsec indicating that with proper circuit compensation the risetime requirement of the SSC LEB can be obtained with the BLT switch.

Figure 4a. BLT current pulse exhibiting slow prepulse behaviour.

Figure 4b. BLT current pulse with no prepulse obtained using preionization before triggering. Current rises from 0 to 6kA in <50nsec

IV. CONCLUSION

A BLT switch with performance capabilities suitable for particle accelerator systems including fast kicker magnets has been demonstrated. With careful design of PFN and triggering circuits performance required by the SSC LEB kickers could be obtained with the BLT switch. The high current capability allows the possibility of driving several systems in parallel switched by a single BLT. Additional work is required to more accurately define the performance of the BLT switch in areas of lifetime, average power, and triggering.

V. REFERENCES

We would like to acknowledge the work of W. Nunnally and R. Yechury of University of Texas at Arlington in helping to obtain the 1 ohm results.