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Abstract 

A stationary solution of the Vlasov equation fulfills a non- 
linear integral equation of Volterra type known as Haissin- 
ski’s equation. It describes the shape of a bunch of par- 
ticles as function of the current and the impedance of the 
surrounding structure. For a linear accelerating voltage, 
the zero current bunch has a Gaussian shape, while it is 
deformed for finite currents. This paper describes a new 
analytic technique for solving this integral equation which 
is based on transforming the Volterra integral equation 
into one of Fredholm type with fixed integration limits, 
using a Fourier expansion for the discontinuous integrand. 
The results are applied to LEP at injection energy and are 
found to be in excellent agreement with measurements of 
the bunch length in the potential well regime. 

1 Introduction 

The longitudinal phase-space distribution of an electron 
bunch in a high energy storage ring or accelerator is de- 
scribed by a Fokker-Planck equation. In particular, the 
energy distribution is determined by the equilibrium be- 
tween radiation damping and quantum excitation of the 
synchrotron motion. In the absence of additional perturb- 
ing forces, the energy distribution is Gaussian.The station- 
ary bunch shape or line density A(r) was originally writ- 
ten as an integral equation containing a double integral [l]. 
Rowever, by redefining the kernel, it can be reduced to an 
equation with a single integral[2],[3] 

X(T) = Kexp[-Uc(r)-fJ-b,dlS(r--t)X(r)] (1) 

where U,(r) is the potential of the applied RF voltage. For 
a (locally) linear RF voltage - usually a very good approx- 
imation for electron storage rings with short bunches - the 
potential is parabolic 

(2) 

where 0s is the zero-current RMS bunch length. The pa- 
rameter < is proportional to the bunch current and given 
by 

e= 
2?TIB 

hd’h-‘SdsW;~; (3) 
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S(r) stands for the “step-function response”, defined as the 
integral over the wake function which itself is the Fourier 
transform of the impedance Z(w), i.e.. 

S(T) = & /’ dt / 
+03 

dw Z(w) exp (iwt) (4) 
0 -cm 

Finally, I< is a normalization constant defined by 

I 

+cr, 
dt X(t) = 1 (5) 

-co 

As can be seen from Eqs.(l) and (2), the line density X(r) 
is Gaussian for vanishing bunch current (< = 0). How- 
ever, for t > 0 the Gaussian is deformed. In the follow- 
ing sections we introduce an analytic procedure converting 
the nonlinear Volterra equation to an integral equation of 
Fredholm type which can solved by the method of “de- 
generate kernels”. In Fig. 1 we show the bunch shape 
in LEP at injection energy for various bunch currents as- 
suming a resonator impedance. The curves represent the 
analytic results produced by the theory described in this 
contribution. 

3 
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Fig. 1: Bunch deformation in LEP as function of current 

2 Analytic Solution of the 
Haissinski Equation 

Haissinski’s integral equation (1) has been solved in closed 
form only for two special types of impedances: purely in- 
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ductive [1],[4] p or urely resistive [5]. For purely capac- 
itive impedances an approximate solution has been pub- 
lished recently [6]. 
However, these impedance models are not very realistic 
for short bunches in a high-energy storage ring. Here we 
illustrate the method for a resonator impedance, al- 
though it can be applied to any impedance. The resonator 
impedance has three parameters: shunt impedance R,, res- 
onator frequency w,/2x and quality factor Q > l/2, and 
its step-function response S(d) can be expressed by the 
imaginary part of a complex exponential 

S(q5) = $ Im[e”‘+] (6) 

where 

Finally inserting (15) into (14) and rearranging the terms 
leads to the following system of equations 

X(d) = Kexp{--d2 - CIrn [exp(iv&)G($)]} (16) 

G(d) = F + ; E C2k-le 
-(Zk-l)iv,@ 

2k - 1 (17) 
k=-co 

J 

+-J 

ck = J(P) exp{-i(v, - kv)cplldv (18) 
--co 

which form an infinite set of algebraic equations for the 
coefficients Ck. 

3 Iterative solutions for X(4) 

u, = ulJ(i$ W) (7) 
Since this system of equations is strongly nonlinear, it can- 
not be solved in closed form. We therefore use an iterative 

vo = wo/(Qh) (8) approach to obtain successive approximations of the solu- 
W2 = 4Q2 - 1 (9) tion. For e = 0 the solution is known and given by 

and where we introduced the normalized independent vari- Xc’)(~) = -& exp[-42 ] (1% 
able 

4 = quo&) 
With the parameter 

2&t R, Ib 

’ = - = rhVR~cos& f;a;W W 

(10) We now use this “unperturbed” solution to construct ap- 
proximate coefficients Ci”) from Eq. (18). Then a first 
correction for X can be found from (17) and (16). Insert- 

(11) ing (19) into (18) gives 

the IIaissinski equation for a resonator impedance becomes ($0) = exp(- (Vr -4ku)2 ) 
k (20) 

A($) = Ii’e 
e-‘““A(ip 

I 
All infinite sums occurring after inserting Eqs.( 18) and (19) 

(la) into (17) are of the type 

The basic method to solve Eq. (12) consists in transform- 
ing it from a Volterra to a F’redholm type integral equa- 
tion with integration limits independent of 4. For this 
purpose we use the identity 

J 

@ 
F(v)& = 

-cc J 

+m 
fTcp)H(cp - dJ)dP (13) 

-co 

where H(Z) is the Heavyside step function, i.e. H(z) = 1 
for 3: < 0 and H(z) = 0 when 2 > 0. Then the Haissinski 
equation in the Fredholm representation reads 

A($) = Ii’e 
+- e-‘““X(q)H(9-$)dv 1 (14) 

where w(z) stands for the complex error function. Note 
that the period of the square-wave function does not occur 
in the result for Xc’). As we shall see this remains also 
true for the higher iterates Xc21 and Xc3). In order to get 
more physical insight we expand the perturbing part of the 
exponent of (22) into a Taylor series with respect to 4 

We now replace H(I) by a periodic square wave function 
with a period T = 27r/u assumed to be large compared 
to the bunchlength cro. In particular, we may take the 
machine circumference which is the actual period of the 
line density. We then use the Fourier expansion of H(z) 
(or of the product of H with the step-function response for 
a general impedance) 

X(~)(C$) = Kexp{-+P - Qo - sib - a242...} (23) 

The ak are given by 

a0 = irImjwlu,./2)] (24) 

ai = fc Im[iv,w(v,/2)] (25) 

a2 = ae Im[2iv,/+ - v,2w(r+/2)] (26) 
(15) 

c 
k 

which have been evaluated as described in [7]. For the 
corrected line density we then obtain 

X(‘)(qb) = Kexp{-d2 - 6 exp{ -42} Im[w($ - id]} (22) 
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For Xc*) we need only the term linear in 4 of the perturbing 
part. After normalization it becomes 

X(‘)(qi) = -& exp[-(4 - A$)“] (27) 

with 

A4 = -ier = -tcRe[v,w(u,/P)] (28) 

To first order only a shift of the unperturbed Gaussian is 
observed when the bunch current differs from zero (E > 0). 
The next step is to insert Xc’) into Eqs.(l8) and (17) to 
obtain the next order correction X(‘). 

X(2)(($) = Kc+ fex~{(-~-A~)~)Im[w(~-i(d-A~)l (29) 

As before, expanding the perturbing part of the exponen- 
tial into a Taylor series with respect to 4 - Ad yields 

X(‘)(4) = Ice- ~a-oo-al(9-A~)-a,(~-A~)a- _. 
(30) 

where ue,ul and a2 are given by Eqs.(24) - (26). In this 
order of the approximation we keep terms up to (4 - A4)“. 
Rearranging the terms and using al = -2A$ we arrive at 
the result for Xc21 

~(74 = 
J- 

’ ~“2e-jl+~.)(+W’ (31) 

which is a Gaussian with shift A$ and a bunchlength de- 
pending on c and thus on the bunch current: 

u(t) = 60 

1 + f Im [$$ - v:w(v,/Z)] 
(32) 

In Fig.2 we show a/on as function of the bunch current 
for LEP at injection energy[8]. For this case, the coefficient 
c is related to the bunch current by 

&[pA] = 256/4 (33) 

The full line corresponds to the analytic result (32) while 
the dashed line represents the result obtained from a di- 
rect numeric integration of the Haissinski equation. The 
crosses indicate the results of a series of bunch length mea- 
surements taken in the LEP control room[9]. A further 
improvement can be obtained by performing a third itera- 
tion step by inserting Xt2) into Eqs.(l$) and (.17) to obtain 
from Eq.( 16). 

Xc3)(4) = Ke -~"-:~~P[-~(~-A~)'II~[~(~,-~~c(~-A~)/(~J~S)I 

(34) 
where p = 1 - az. For increasing currents the bunch length 
decreases, due to the capacitive impedance seen by a bunch 
originally shorter than the wavelength of the resonator 
impedance. For larger currents also a slight asymmetry 
of the line density becomes visible. 

Fig.2 Comparison of the analytic expression for the bunch- 
length as function of current with numeric integration and 
measurements 

4 Conclusions 

Analytic expressions for the deformation of an electron 
bunch as function of current have been derived by ex- 
panding the solution of the Haissinski equation valid in 
the potential well region. The strongest effect is a shift of 
the stable phase angle, which increases the potential en- 
ergy of the bunch until it exceeds the total energy of the 
time-dependent solution of the Fokker Planck equation. 
The threshold for “turbulent bunch lengthening” occurs 
approximately when the shift equals one sigma[lO], which 
rule-of- thumb agrees quite well with observations in LEP. 

5 References 

1. A. Haissinski, Nuovo Cimento 18B (1973) p.72 

2. M. Chatard-Moulin, A. Jecko, A. Papiernik, 
Univ. Limoges Reports Al/2 (1973) 

3. K. Bane, P. Wilson, Trans.IEEE-NS 24 (1977) p.1485 

4. G. Besnier, Proc. ESRF Impedance workshop (1988) 

5. A. Ruggiero, ‘Dans.IEEE-NS 24 (1977) p.1205 

6. A. Burov, Part. Accel. 28 (1990) p.525 

7. B. Zotter, CERN Report ISR/TH 80-03 (1980) 

8. J. Hagel, B. Zotter, CERN Report SL/AP 91-07 (1991) 

9. D. Brandt et al., CERN-LEP Performance 
Note 34 (1990) 

10. R. Meller, Proceedings US Particle Accelerator 
Conference 1987, p.1145 

490 

PAC 1991


