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Abstract 

Emittance can be measured by intercepting an elec- 
tron beam on a range thick plat,e and then observing the 
expansion of beamlets transmitted through small holes. 
The hole size is selected to minimize space charge effects. 
In the presence of a magnetic field the beamlets have a 
spiral trajectory and the usual field free formulation must 
be modified. To interpret emittance in the presence of a 
magnetic field an envelope equation is derived in the ap- 
propriate rot,ating frame. 

Introduction 

Emittance in a magnetic field can be measured by using 
an emittance mask or “pepper” pot plate to determine the 
change in radius of a small radius beamlet which transmits 
through the emittance mask. There is a straightforward 
envelope equation formula that is commonly used in exper- 
iments with a beamlet in a field free region to determine 
emittance. However, in a magnetic field a beamlet does 
not travel in a straight line, but rather rotaces at the cy- 
clotron frequency in a spiral path. In order to analyze 
emitt,ance measuring experiments, when a magnetic field 
is present, it is necessary to examine the envelope equation 
in a frame which eliminates the effect of the spiral mo- 
tion. To accomplish this goal the beamlet is described by 
an envelope equation applicable to a frame rotating at the 
cyclotron frequency. 

For comparison we first derive the formula based on the 
field free emittance measurement. Next the envelope equa- 
tion for a beamlet in a magnetic field is derived, introduc- 
ing a new quautity Qd, which enters the envelope equation 
quadratically with the emittance. To augment the inter- 
prct,ation of esperiment,al dat,a the envelope equation in 
the rot,ating frame is written with quantities expressed in 
terms of lab frame equivalents. A discussion is given of the 
assumptions necessary to allow an identification of the Qs 
function wit#h t,he familiar canonical angular moment,um. 

Field Free Emittance Measurement 

The field free emit#tance is measured by observing the 
init,ial and final radius of a beamlct which passes through 
a hole in a range thick emittance mask. Over a known 
distance t,he change in radius is related to the emittance by 
the euvplope equation. For constant energy and assuming 
canonical angular momentum is zero: t,he rms envelope 
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equation [l] for current I* is, 

d=R Ib - - 
dr” 17OOOy3R 

+;k:R--- %?am _ 0 

y?R3 (1) 

Generally the beamlet transmit,s through a hole in the 
emittance mask small enough so the dynamics are domi- 
nated by emittance rather than space charge. The criteria 
for an emittance dominated beam is that 1b/17000;/ << 

GLlJR2~ which for known current, y and expected emit- 
tance specifies a bound on the emittance mask hole ra- 
dius. To analyze the beamlet it is assumed current is small 
enough to satisfy this criteria, and in a field free region 
k, = 0 so the gover?i_ng equatiz: is, 

dL&let J%k!t ~-- 
dr= y2 R3 

=o 
blet 

(2) 

where Rb)& is the rms radius of the beamlet and Eb]et 
is the emittance of the beamlet. Solving Eq.(2) the rms 
radius is then related to the emittance by, 

J EL _ Ii’lR&et - ~ - 
Y2 

Klz + 
J 

where the constant I<1 = (dRbl,t/dz)z + E&,/(~Ro)~ 
depends on the initial conditions. In a typical experiment 
(dRblet/dz)O = 0 and we obtain, 

Eblet = +JD 

For a known emittance mask hole size (fiRo) and mea- 
sured final beamlet rms radius, the normalized rms emit- 
tance, Ebl& is given by Eq.(4). Under t,he assumption of a 
uniform phase space fill Itlet/E&et = Ibeam/E&am and t’he 
beam emittance can be expressed in terms of the currents 
and beamlet emittance, 

E beam = %m& (5) 

Alternatively a number of beamlets may be used to obtain 
velocity angles at several beam radii and a phase space 
plot, can then be constructed. The emit,tance is derived 
from the area of the circumscribing phase space ellipse. 

Emittance Measurement in a Magnetic Field 

In a magnetic field it is necessary to derive an envelope 
equation in a frame rot.ating with the beam. Generally 
for an experiment in which the goal is to achieve as small 
a beam focus as possible the initial beam emission is set 
up to guarantee the canonical angular momentum of the 
beam is zero. When the canonical angular momentum of 
the beam is zero the appropriat,e rot~ation frequency of the 
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frame rotating with the beamlet is the cyclotron frequency. 
The starting point of the derivation is Eq.(17) from refer- 
ence [l], where energy is assumed to be constant and self 
forces are neglected. 

<>z -&cE,. For example L =< I >, R2 =< rf2 >, and 
V2 =< (dr*/d2*)2 >. Averaging over Eq.(9) gives, 

(1‘4 

(6) averaging over Eq.( 10) gives, 

Neglecting self forces is a similar assumption to the no 
space charge criteria discussed previously. In Eq.(6) the 
cyclotron frequency contains the sign of the charge, w, = 
qBz/Tmc. The desired rotating frame rotates in the same 
direction as an electron. For B, > 0 and V, > 0 an electron 
rotates in the 0 direction, so the correct angular rotation 
vector is ]w,li, and because for an electron the charge is 
negative, this is -w,. Denoting by an asterisk the time 
derivative in the rotating frame, the relation between the 
time derivative in the fixed frame to that in the rotating 
frame is d/dt = d/dt* --w,ix. Using this relation in Eq.(6) 
gives, 

To get a force equat,ion for t,he vector from the beamlet 
centroid to the particle, r”, set ? = 1; + ?rot where r’,,t is 
the vector from the original origin to the center of rotation 
and the ? is the vector from the center of rotation to the 
particle. The beamlet centroid is assumed to be located + 
by h from t,he original origin, and h = r’,,t + r’=, where 
TC locat,es the beamlet center from the center of rotation. 
The equat,ion for h’ is the same as that of 7 in Eq.(7). 

Consequent,ly r’- h’ must also satisfy the same equation 
and this gives the equation for 2 - r’, = 7;” which yields 
the desired equation for r”. 

1 dw, ^ dr;” 
=--zxl~+wcix- 

2 dt’ dt’ (8) 

To derive an envelope equation from Eq.(8) three sub- 
sidiary equations are obtained from dot products. An 
energy equation is obtained from the dot product with 
dl=+-/dt*: 

(9) 

where I = [P x dP/dt*] . i. A virial equation is obtained 
from a dot product with r”, 

$ (q) - (g)‘= -w,l (10) 

The third equation is obtained from the z component of 
i;” x Eq.(b), 

dl P2 dw w, dr” 
dtl:= I -++yy&c- (11) 

The average, <> over a slice ofthe heamlet is defined to 
be a summation of a part,icle quant,it,y over the radial slice, 

= v2 - w,L 

and averaging over Eq.(ll) gives, 

dL R”” dw, w, dRe2 
dt”= 2dt’+zF 

From Eq.(\4) t i can be shown dQo/dt’ = 0 where Qs = 
;izL - w,R /2)/c, Using Eq.(13) in Eq.(12) t,o eliminate 

+ ;w;R’~ zz 0 (15) 

An integration of Eq.(15) gives the beatnlet envelope equa- 
tion in the rotating frame, 

d2&et 
dz2 

+ $&,,,t - Ei,et+Q; =o 

Y’%t 
(16) 

where E&,, = y’ R&J V2 - (dRbl,t/dt*)2 - (L/Rb,et)2)/c2. 
Note that Eblet and L refer to the emittance and angular 
momentum of the beamlet. Jf rotation shear in the original 
beam which intercepts the emitt,ance tnask can be ignored 
and we assume L M 0 this leads t#o Qo x -yk,R2/2 and 
then Eq.(16) becomes, 

(17) 

Under this condition Eq.(5) b can e used to determine emit- 
tance, and the answer is identical to t.he field free case. 

For the most general situation the rotating frame quan- 
tities E& t 

75 
and Qi need t,o be related to the stationary lab 

frame. hblet is a preserved quantity since there is no scat- 
tering and Qi is preserved as a consequence of Eq.(14). It 
is therefore only necessary to find t.he relationship between 
the lab and rotating frame quantities at the creation posi- 
tion of the beamlet and it is Glen known for all positions. 
From the usual definitions V2 = I$, + w$??&, and also 
15 = hab + d&+ Thus the definition of the beamlet 
emittance can be expressed in terms of lab quantities at 
the creation position of the beamlet, 

E&e, = Y2 Rket ( %t, - (d&et/dt*)2 - (hab/Rti,et)2)/C2 
(1s) 

and the rotating frame quantity Qo is expressed in t.crms 
of lab angular moment,um, 

The expression on the right hand side of Eq,(lS) is very 
similar t,o the definition of the whole beam canonical angu- 
lar momentum. The correspondence is however incomplete 
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since the whole beam canonical angular momentum is an 
average over all particles and Ll& has only included parti- 
cles contained in the beamlet. To make further progress it 
is assumed that any part of the whole beam is character- 
ized by any other smaller subset. When this assumption 
is satisfied we have QS = Pe. 

In Eq.(18) there is an additional problem beyond the 
question of uniformity because dRbiet/dt* is the Fonver- 
gence or divergence of the beamlet with respect to Its cen- 
ter, whereas the analogous quantity for the whole beam 
is with respect to the whole beam center. This means in 
general the beamlet quant,ity particles have a net inward 
or outward motion with respect to the whole beam center. 
For the beamlet this is like a steering kick. To avoid this 
problem it is assumed the whole beam arrives at the beam- 
let creat,ion location at a waist. ilt this location we then 
have, from the assumption of uniform phase space fill, 

=XE&,, (20) 

The S function can be expressed in terms of the beam 
abeam and beamlet radius ab&, The beamlet current den- 
sity is assumed to be uniform over its area with a value 
given by the whole beam (uniform phase space) current 
deiisity at t,he beamlet centroid position oh. 

J Glet= 2 [I- (ftd:;.)l] (21) 

Using I&t = ?iuk,,,,Jt,let and Eq.(21) we find, 
S = 2(nb1et/abeam)‘(1 - (l.h/abeam)2). The canonical an- 
gular momentum of the whole bearn is assumed to be zero 
and then the beamlet envelope equation in the rotating 
frame is. 

d’fbet 1 + q@hrct - _____ - ~~ELam _ 0 
d 22 Y2 Rk!t 

(22) 

From Eq.(22) the radial spread of a beamlet can be used 
t,o determine Abeam. 

Oft.en in experiments an att8cmpt is made t,o eliminat8e 
tile field in the beamlet expansion region. Thus an int.er- 
esting comparison is the size of the second and third terms 
in Eq.(22). This comparison indicates how successful one 
must, be experimentally at, eliminat,ing field leakage so the 
emit8tance dominates the expansion of t#he beamlet. The 
two terms are equal at a field strength of, 

B[gauss] = 
3400&,,,,~ 

%Iet 
(231 

The conclit,ion given by Eq.(23). p , fi s cci es the field such that 
the beamlet does not change radius if the initial beamlet 
dR/dz = 0. For D less than the value given by Eq.(23) the 
emit.tance is dominant, and when it is greater t.he magnetic 
field is dominant. For nominal values of ,!?beam = 0.25 
rad-cm, Rk,let = 0.1 cm and .Y = 0.01 cm Eq.(23) gives 
B = 8500 gauss. 

In a sit.uation where k, is constant in z Eq.(22) can be 
solved, 

k,z =sin 
-I k,2RElet - 21\‘2 

vz 1 
- sin 

-1 k,“(R0,,,J2 - 21\1z 

I/& 1 (24) 
where the constant Ic’z = (dRglet/dz)” + 0.25kz(R”,,,,)2 + 
P’@&m,)l(-&,et)2> is from the init,ial conditions, and 
KS = 41<: - 4,YE&,,(k,/y)2. Since Ebeam is contained in 
the definition of Ji2 and K3, it can be seen t,hat Eq.(21) is 
a t,ranscendental equation for Abeam. When k, is small the 
starting point for a numerical solution is to use t#he field 
free solution for Abeam. 

In an experiment where emittance is known Eq.(22) 
can be solved to give the beamlet radius at a particular 
location. 

R blet = $J21c2 + &sin (k& + sin-l [p]) 
c 

PO= 
k;(R&,,)’ - 2Kz 

fi 
(25) 

As a test of the derivation of Eq.(22) and the Eq.(25) SO- 
lution, a particle code was used to follow a bcamlet over 
a distance of 71.2 cm with 1600 partices. The magnetic 
field was 2550 gauss, (Ibeam = 1 cm, abl& = 0.15 cm, 
E beam = 0.25 rad-cm, y = 34 and RE,,, = 0.104. The 
Eq.(25) solution gives &let = 0.48 cm for these parameters 
and the computer simulation gives a value of !&let = 0.50 
cm which agrees to 4%. 

S unlxnary 

The formula relating the emittance to the initial and fi- 
nal transmitted beamlet radius has been derived for a field 
free measurement. A beamlet envelope equat,ion neglect- 
ing space charge and assuming constant energy has been 
derived in a frame rotating at the cyclotron frequency. It 
was found when the beamlet does not have any angular 
momentum the magnetic field term in the rotating frame 
envelope equation is canceled by the Qo contribution. In 
this situation the rotating frame envelope equation is iden- 
tical to the field free case and the original relat,ion for 
emittance in terms of initial and final transmitt,ed beamlet 
radius is applicable. Tn t,he general case an equivalence be- 
tween lab canonical angular mornent,um and Qo has been 
shown and t,he assumptions necessary for this to be valid 
have been discussed. For uniform phase space the enve- 
lope equation in the rotating frame was written in terms 
of the lab or whole beam emittance. III order to do this 
it was necessary to assume a beam waist at the heam- 
let creation position. It is the measurement, of the whole 
beam emittance that is the usual experimental objective. 
An expression that may be numerically solved has been 
determined to solve for the whole beam emit,tance, given 
experiment,al values of beam energy, magnetic field, initial 
and final bcamlet radius. For a sit,uat,ion where emittance 
is known a solution has been derived for the beamlet ra- 
dius at any position. This solution has been test.ed against 
a particle code and found t,o agree to within 4%. 
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