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Abstract

Emittance can be measured by intercepting an elec-
tron beamn on a range thick plate and then observing the
expansion of beamlets transmitted through small holes.
The hole size is selected to minimize space charge effects.
In the presence of a magnetic field the beamlets have a
spiral trajectory and the usual field free formulation must
be modified. To interpret emittance in the presence of a
magnetic fleld an envelope equation is derived in the ap-
propriate rotating frame.

Introduction

Emittance in a magnetic field can be measured by using
an emittance mask or “pepper” pot plate to determine the
change in radius of a small radius beamlet which transmits
through the emittance mask. There is a straightforward
envelope equation formula that is commonly used in exper-
iments with a beamlet in a field free region to determine
emittance. However, in a magnetic fleld a beamlet does
not travel in a straight line, but rather rotates at the cy-
clotron frequency in a spiral path. In order to analyze
emittance measuring experiments, when a magnetic field
is present it is necessary to examine the envelope equation
in a frame which eliminates the effect of the spiral mo-
tion. To accomplish this goal the beamlet is described by
an envelope equation applicable to a frame rotating at the
cyclotron frequency.

For comparison we first derive the formula based on the
field free emittance measurement. Next the envelope equa-
tion for a beamlet in a magnetic field is derived, introduc-
ing a new quantity @y, which enters the envelope equation
quadratically with the emittance. To augment the inter-
pretation of experimental data the envelope equation in
the rotating frame is written with quantities expressed in
terms of lab frame equivalents. A discussion is given of the
assumptions necessary to allow an identification of the Qg
function with the familiar canonical angular momentum.

Field Free Emittance Measurement

The field free emittance is measured by observing the
initial and final radius of a beamlet which passes through
a hole in a range thick emittance mask. Over a known
distance the change in radius is related to the emittance by
the envelope equation. For constant energy and assuming
canonical angular momentum is zero, the rms envelope
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equation [1] for current Iy is,
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Generally the beamlet transmits through a hole in the
emittance mask small enough so the dynamics are domi-
nated by emittance rather than space charge. The criteria
for an emittance dominated beam is that I, /17000y <<
EZ..../R?% which for known current, v and expected emit-
tance specifies a bound on the emittance mask hole ra-
dius. To analyze the beamlet it is assumed current is small
enough to satisfy this criteria, and in a field free region
k. = 0 so the governing equation is,
d*Roter  Efje
de 'YzRglet

where Ryt 1s the rms radius of the beamlet and FEyje
is the emittance of the beamlet. Solving Eq.(2) the rms
radius is then related to the emittance by,
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where the constant K; = (dRulet/d2); + E2./(YRo)?
depends on the initial conditions. In a typical experiment
(dRpiet/d2z)o = 0 and we obtain,

=0 (2)
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For a known emittance mask hole size (\/§R0) and mea-
sured final beamlet rms radius, the normalized rms emit-
tance, Eplet 15 given by Eq.(4). Under the assumption of a
uniform phase space fill Tyjet/ EZ 1oy = Iveam/ Efear, and the
beam emittance can be expressed in terms of the currents
and beamlet emittance,

7R [beam
Eveam =~/ Rie = B3y (5)
~ blet

Alternatively a number of beamlets may be used to obtain
velocity angles at several beam radi and a phase space
plot can then be constructed. The emittance is derived
from the area of the circumscribing phase space ellipse.

Emittance Measurement in a Magnetic Field

In a magnetic field it 1s necessary to derive an envelope
equation in a frame rotating with the beam. Generally
for an experiment in which the goal is to achieve as small
a beam focus as possible the initial beam emission is set
up to guarantee the canonical angular momentum of the
beam is zero. When the canonical angular momentum of
the beam is zero the appropriate rotation frequency of the
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frame rotating with the beamlet is the cyclotron frequency.
The starting point of the derivation is Eq.(17) from refer-
ence [1], where energy is assumed to be constant and self
forces are neglected.

(df"> _
dt )
Neglecting self forces is a similar assumption to the no
space charge criteria discussed previously. In Eq.(6) the
cyclotron frequency contains the sign of the charge, w. =
qB./ymec. The desired rotating frame rotates in the same
direction as an electron. For B, > 0 and v, > 0 an electron
rotates in the @ direction, so the correct angular rotation
vector is |w.|2, and because for an electron the charge is
negative, this is —w.Z. Denoting by an asterisk the time
derivative in the rotating frame, the relation between the
time derivative in the fixed frame to that in the rotating
frame is d/dt = d/dt* —w.2x. Using this relation in Eq.(6)

gives,

To get a force equation for the vector from the beamlet
centroid to the particle, 7, set ¥ = v+ ot Where Trog 18
the vector from the original origin to the center of rotation
and the 1 is the vector from the center of rotation to the
particle. The beamlet centroid is assumed to be located
by h from the original origin, and h = Treot + Te, Where
7 locates the beamlet center from the center of rotation.
The equation for h is the same as that of 7 in Eq.(7).
Consequently 7 — A must also satisfy the same equation
and this gives the equation for r’ — 7 = 7 which vields
the desired equation for 7.

()

To derive an envelope equation from Eq.(8) three sub-
sidiary equations are obtained from dot products. An
energy equation is obtained from the dot product with

dr-/dt*,

where [ = [/ x d7*/dt*]- z. A virial equation is obtained
from a dot product with 7,
2
) = —w,!

The third equation is obtained from the z component of
™x Eq.(3),
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The average, <> over a slice of the beamlet is defined to
be a summation of a particle quantity over the radial slice,

<>= 7{,—2?’;1 For example L =<1 >, R2 =< r*? > and
V2 =< (dr*/dt*)? >. Averaging over Eq.(9) gives,

d dw.
" =t (12)
averaging over Eq.(10) gives,
d*> (R .
T ( 5 ) =Vi_w.L (13)

and averaging over Eq.(11) gives,
dL R3dw, w,dR*?
—_— = — 14
dt* 2 dt> 2 di~ (14)

From Eq.(14) it can be shown dQs/dt* = 0 where Qg =
(L — w,R%/2)/c. Using Eq.(13) in Eq.(12) to eliminate
Ve,

(i 0

An integration of Eq.(15) gives the beamlet envelope equa-
tion in the rotating frame,

d
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where Eglet =7° R%lec(vz ”(delet/dt*)g’” (L/Rblet)g)/cz-
Note that E\je; and L refer to the emittance and angular
momentum of the beamlet. If rotation shear in the original
beam which intercepts the emittance mask can be ignored

and we assume L & 0 this leads to Qs ~ —7vk.R%/2 and
then Eq.(16) becomes,
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Under this condition Eq.(5) can be used to determine emit-
tance, and the answer is 1dentical to the field free case.

For the most general situation the rotating frame quan-
tities EZ,., and Q% need to be related to the stationary lab
frame. Ef_, is a preserved quantity since there is no scat-
tering and Q% is preserved as a consequence of Eq.(14). It
is therefore only necessary to find the relationship between
the lab and rotating frame quantities at the creation posi-
tion of the beamlet and it 1s then known for all positions.
From the usual definitions V? = V2, + w?R%let and also
L = L + chf,let- Thus the definition of the beamlet
emittance can be expressed in terms of lab quantities at
the creation position of the beamlet,

Efier = 7° Ritee(Viap — (dRuier/dt*)? ~ (Llab/Rblec)z){Cg)
18
and the rotating frame quantity Qs is expressed in terms
of lab angular momentum,
1€$}Iet>

The expression on the right hand side of Eq.(19) is very
similar to the definition of the whole beam canonical angu-
lar momentum. The correspondence is however incomplete

1

2

Qs = % (Llab + (19)
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since the whole beam canonical angular momentum is an
average over all particles and Ly, has only included parti-
cles contained in the beamlet. To make further progress it
is assumed that any part of the whole beam is character-
ized by any other smaller subset. When this assumption
is satisfied we have Qg = Py.

In Eq.(18) there is an additional problem beyond the
question of uniformity because dRylet/dt* is the conver-
gence or divergence of the beamlet with respect to its cen-
ter, whereas the analogous quantity for the whole beam
is with respect to the whole beam center. This means in
general the beamlet quantity particles have a net inward
or outward motion with respect to the whole beam center.
For the beamlet this is like a steering kick. To avoid this
problem it is assumed the whole beam arrives at the beam-
let creation location at a waist. At this location we then
have, from the assumption of uniform phase space fill,

Iy

2 _ et 2
Eblet - Fi Ebeam
beam

:‘XEgeam (20)
The X function can be expressed in terms of the beam
Abeam and beamlet radius apies. The beamlet current den-
sity is assumed to be uniform over its area with a value
given by the whole beam (uniform phase space) current
density at the beamlet centroid position ry.

QIbeam

r 2
- (o)
Theam Abeam

(21

Jotet = 5

Using Ipjer = 7@l Joler and Eq.{21) we find,

X = 2(aplet/apeam) (1 — (rn/aveam)?). The canonical an-
gular momentum of the whole beam is assumed to be zero
and then the beamlet envelope equation in the rotating
frame is,

2
X Ebeam

d* Ry,
2 72 R%let

let 1 2
— = 4 =k Rples — =0 22
dz * q e thlet (22)
From Eq.(22) the radial spread of a beamlet can be used
to determine Epeam-

Often in experiments an attempt is made to eliminate
the field in the beamlet expansion region. Thus an inter-
esting comparison is the size of the second and third terms
in Eq.(22). This comparison indicates how successful one
must be experimentally at eliminating field leakage so the
emittance dominates the expansion of the beamlet. The
two terms are equal at a field strength of,

3400 Epeam VX

Blgauss] =
Rilet

(23)

The condition given by Eq.(23) specifies the field such that
the beamlet does not change radius if the initial beamlet
dR/dz = 0. For B less than the value given by Eq.(23) the
emittance is dominant, and when it is greater the magnetic
field is dominant. For nominal values of Fyeam = 0.25
rad-cm, Rpwe = 0.1 em and X = 0.01 em Eq.(23) gives
B = 8500 gauss.
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In a situation where k. is constant in z Eq.(22) can be
solved,

bs —in-1 | Fefthie = 200

2 o] 2 _ 0
_ Sin—l kc(Rb]et) 2]\~]
VI3

where the constant Ky = (AR /dz)? + 0.25k2( Ry ) +
(XYEE )/ (YRY)?, 1s from the initial conditions, and
Ki=4K3—4XEZ,,  (k:/7)?. Since Fpeam is contained in
the definition of Ko and K3, it can be seen that Eq.(24) is
a transcendental equation for Epeam. When k. is small the
starting point for a numerical solution is to use the field
free solution for Epeam-

(24)

In an experiment where emittance is known Eq.(22)
can be solved to give the beamlet radius at a particular
location.

1 . .
Rijet = E\/{Kg + Kzsin (k.z + sin™? [4,9])
_k2(RBe)® — 2K
- RV4 ](3
As a test of the derivation of Eq.(22) and the Eq.(25) so-
lution, a particle code was used to follow a beamlet over
a distance of 71.2 ¢cm with 1600 partices. The magnetic
field was 2550 gauss, Gpeam = 1 cm, apler = 0.15 cm,
Epeam = 0.25 rad-cm, v = 34 and R}, = 0.104. The
Eq.(25) solution gives Rpler = 0.48 cm for these parameters
and the computer simulation gives a value of Ryt = 0.50

em which agrees to 4%.
Summary

(25)

The formula relating the emittance to the initial and fi-
nal transmitted beamlet radius has been derived for a field
free measurement. A beamlet envelope equation neglect-
ing space charge and assuming constant energy has been
derived in a frame rotating at the cyclotron frequency. It
was found when the beamlet does not have any angular
momentum the magnetic field term in the rotating frame
envelope equation is canceled by the Qg contribution. In
this situation the rotating frame envelope equation is iden-
tical to the field free case and the original relation for
emittance in terms of initial and final transmitted beamlet
radius is applicable. In the general case an equivalence be-
tween lab canonical angular momentum and Qs has been
shown and the assumptions necessary for this to be valid
have been discussed. For uniform phase space the enve-
lope equation in the rotating frame was written in terms
of the lab or whole beam emittance. In order to do this
it was necessary to assume a beam waist at the beam-
let creation position. It is the measurement of the whole
beam emittance that is the usual experimental objective.
An expression that may be numerically solved has been
determined to solve for the whole beam emittance, given
experimental values of beam energy, magnetic field, initial
and final beamlet radius. For a situation where emittance
is known a solution has been derived for the beamlet ra-
dius at any position. This solution has been tested against
a particle code and found to agree to within 4%.
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