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Abstract 

We present a strategy for achieving the so-called first 
turn around in RHIC. The strategy is based on the same 
method proposed to correct a distorted closed orbit in 
RIIIC, i.e. on a generalization of the local three-bump 
method.[l] We found out that the method is very effective 
in passing the beam through a non-ideal, insufficiently 
known, machine. The perturbed lattice was generated by 
the code PATRIS, which was also adapted to control the 
newly developed software. In ten distributions of errors 
the software was capable of passing the beam through in 
2-3 injection attempts, at full sextupole strength. It was 
also determined that once the beam makes the first turn 
around and all the correctors are energized, it stays in the 
machine for at least several hundred turns. 

I. INTRODUCTION 

An accelerator lattice cannot be expected to be 
perfect and as a consequence the same is true for the 
closed orbit in the machine. Since assumptions can be 
made about the order of realistic lattice imperfections, it is 
also possible to estimate the order of the resulting closed 
orbit distortions. If there is a well-defined correcting 
scheme, a distorted closed orbit can also be corrected to 
a level of distortions which are acceptable. This in turn 
requires a beam circulating in the machine, so that the 
orbit readings can be taken. An important consequence 
is the existence of a very special moment in the history of 
every accelerator, i.e. the situation when the machine is 
completed and ready to work, but the beam has yet to be 
injected for the first time. The problem is the unknown 
machine which will obviously give rise to a distorted 
closed orbit, but which cannot be corrected before the 
readings are taken. Since correctors cannot be adequately 
set, the beam is first injected without any correction 
and can easily encounter physical aperture limitations 
and be lost before making the first turn around. This 
necessitates implementation of a special strategy called 
“the first turn around strategy”, to complete one turn, 
after which one hopes to know enough about the effects of 
lattice imperfections to be able at least to keep the beam 
in the machine until the orbit can be better corrected. 
In the case of RHIC, realistic closed orbit analysis[l,3] 
indicates that there are very good chances that the beam 
hits the walls of the vacuum chamber before making a full 
turn. Hence, developing a “first turn around strategy” is 
a necessity for RHIC. 

* Work performed under the auspcies of the U.S. Department 
of Energy. 

II. RHIC LATTICE - ITS IMPERFECTIONS & CON- 
SEQUENCES ON THE CLOSED ORBIT 

There are four types of lattice imperfections which 
are considered to be major sources of orbit distortions. 
They are the error in the integrated dipole field strength 
As/?/se, the axial rotation of the dipole A0, and the 
lateral displacements AgX and AgY of the quadrupole 
in the two transverse directions. The RMS values of the 
lattice errors applicable to RHIC are the following ones: 

A (BC) /se = 0.5 x 10-3, AhB = 10v3rad 

AQX = AQY = 0.25 x 10T3m . 
(1) 

We have simulated the closed orbit distortions in 
RHIC, with the above RMS values of random errors in 
the lattice. We used PATRIS as the code of choice. 
Throughout the simulation sextupoles were assumed to 
be thin lenses, but otherwise perfect, higher order non- 
linearities were absent, and the effects of errors were 
realistically incorporated into the 7 x 7 transfer matrix 
used by PATRIS. Beam position monitors were assumed 
ideal, i.e. perfectly aligned with the axis going through 
an ideally placed quadrupole and having a perfect sen- 
sitivity. They were placed beside each quadrupole and 
measured orbit distortions in the plane where beta func- 
tion was large. Correctors were modeled as thin lenses, 
but otherwise they were also considered ideal, i.e. ideally 
placed like BPM’s and having a perfect adjustability. 

The results of our realistic closed orbit analysis 
showed the following characteristic features, tested on 
10 different Gaussian distributions of lattice errors. With 
the accepted RMS values, with no correction and with no 
checks for possible violations of physical aperture restric- 
tions, largest orbit distortions reached - 40 - 50 mm at 
some BPM’s in the arcs and - 100 mm in the insertions. 
This means that the beam would have good chances to 
violate aperture limitations at some point and strike the 
wall of the vacuum chamber. This was one of the char- 
acteristic properties of the uncorrected closed orbit, but 
the same would happen during injection, resulting there- 
fore in a beam loss and in a failure to make the very first 
turn around in the absence of any correction. 

III. IMPROVED METHODS FOR CLOSED ORBIT 
CORRECTION 

There are many ways of getting the beam around 
for the first time. Even though it is not necessary, one 
is tempted to use some of the methods developed for 
the purpose of closed orbit correction and adapt them to 
make the first turn around. However some restrictions do 
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apply here. Closed orbit correction methods that require 
circulating beam are obviously inappropriate, while others 
may be applicable with more or less success. It is 
worthwhile to mention that the local three-bump method 
is one of the best methods and is easily adapted to 
steer the beam through the machine for the first time. 
Indeed, this was the method of our choice and we initially 
developed software based on this method. With the 
RHIC’s realistic errors, the software accomplished the 
first turn around in just 2 or 3 injection attempts and 
subsequently closed and further corrected the orbit to 
distortions being less than one millimeter at BPM’s. 

This simple scheme, however, could not be imple- 
mented for RHIC’s hardware in a straightforward manner; 
RHIC BPM’s and correctors are not placed beside each 
other, but at the two opposite sides of each quadrupole. 
Hence, there is always a quadrupole, and in the arcs also 
a sextupole, inside each BPM - corrector pair. They 
both act as a significant orbit perturber and invalidate 
the simple three-bump method. This necessitated its 
generalization which we carried out. 

Our starting point is the formula (4.7) for closed 
orbit distortions, appearing in ref [2]. If the errors can be 
reasonably represented as delta functions or kicks it goes 
over into[3] 

‘i = &$8,\/8;COSU(Qi-Qj -T) 

JZl (2) 

Qi-Qj > 0 

which describes the effects of kicks at j-th locations 
(j=1,2... n) on the orbit distortion at i-th location Zi. 
In this formula v is the tune in the plane described by 
the above expression, 0j is the effective kick at the j-th 
location, ,5 is the appropriate beta function and Q the 
phase advance. Subscript j refers to the perturber, while 
i refers to the point of observation. In this formula, 
the effects of the perturbations, expressed through 0j, 
are linearly propagated along the lattice, whose linear 
characteristics are in this formula still considered ideal. 
Of course, these 0, need not be the actual lattice errors. 
They can also be deliberately delivered kicks, which will 
still produce orbit distortions in an otherwise ideal lattice. 

Now consider a non-ideal lattice with many errors 
which produce orbit distortions &, read at R BPM’s. 
To maximize the effectiveness of BPM’s we place them 
beside each quadrupole where the relevant beta function 
is large. The actual errors will produce. effects mainly 
described by an expression of type (2). Obviously, we do 
not know the exact nature, position and the magnitude 
of each error in the actual lattice. However, we do have 
the readings R and we can try to deliberately kick the 
beam so as to steer it through reflected distortions -Ri, 
in the absence of actual errors. When applied, these kicks 
will then act toward canceling the effects of actual errors 
to the leading order. 

Now we simply take RI, Rz, . . R,, the readings at n 
BPM’s, and demand that the n corresponding correctors 

deliver such kicks, expressed as angles 81, 02, . . &,, that 
they generate orbit distortions equal in magnitude but 
opposite in sign to those being measured, i. e. Zi = -&. 
The expression (2) now yields: 

zj=-fi= &$ej&coSv(Qi-Qj -‘T) 
j=1 IfI\ 

j=l 

Since the number of correctors is the same as the number 
of monitors, the matrix Aij is a square, generally nonsin- 
gular matrix which can be inverted. After inverting it, we 
get the desired kick angles 

di = C (A-‘)ij Zj = C (A-l)ij (-Rj) (4) 
j=l j=l 

which would steer the beam through the positions Zi = 
-Ri, i = 1,2,... n, in the absence of errors and will 
consequently cancel distortions to the leading order in 
the presence of errors along with nonlinearities. Without 
nonlinearities the cancellation is complete. 

IV. METHODS OF ACHIEVING THE FIRST TURN 
AROUND 

The strategy goes as follows. The beam is injected 
and its progressing through the lattice is monitored on 
BPM’s. The correctors are turned off, since initially one 
does not have any information on how to power them. 
Once the beam is lost by exceeding the available aperture 
at a certain place in the lattice, one knows the readings 
on all BPM’s preceding the area where the beam is lost. 
These readings are simply introduced into the expression 
(4), and the orbit coordinates at the BPM’s past the 
point of loss, where no readings have appeared yet, are 
simply left to be zero. The expression (4) then predicts 
fairly accurate values of kick angles for all correctors 
except for a couple of them around the injection point 
and where the beam is lost. All the other correctors 
between the injection point and the point where beam is 
lost are then energized and the beam is injected again. It 
then starts with significantly reduced distortions, passes 
the critical point, and continues along the lattice in the 
region with the correctors still not energized until it is 
lost again. The whole procedure of kick angle evaluation 
is now repeated and the newly found kick strengths are 
simply added to the previous values. The correctors are 
then energized again, with more of them being powered 
at this stage, and the beam is reinjected. This procedure 
is then continued until the beam makes its first turn 
around. With RHIC’s RMS error levels, under ideal 
injection conditions assumed so far in the simulations, it 
usually takes just 2 or 3 injection attempts to make the 
first turn around. 
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There is another problem that shows up now. The 
orbit is established and its distortions are significantly re- 
duced, but it is not completely corrected yet. That means 
that the injection point does not lie at the current, mostly 
corrected closed orbit. As a result, betatron oscillations 
develop the very moment the beam makes the first turn 
around. To prove that the large readings at the BPM’s, 
which change from turn to turn, are really betatron os- 
cillations, we plotted the readings at a fixed BPM for 
several dozen turns and observed that they lie on a typ- 
ical phase space ellipse. At this stage, however, sizable 
readings, in a 1 - 5 mm range, may still appear at most 
monitors. But our analysis demonstrates that they are 
essentially free betatron oscillations which arise because 
one still does not inject at the actual closed orbit. These 
betatron oscillations are not desirable and would have to 
be removed either by an appropriate damping device[4] 
or by trying to adjust the initial injection conditions to 
better match the actual closed orbit. For the purpose 
of simulation, we developed a simple algorithm which on 
the basis of linear optics properties of the lattice and on 
the basis of some readings at BPM’s evaluates the initial 
betatron amplitude and phase at the injection point, and 
then subsequently finds the actual closed orbit at the in- 
jection point by subtracting the betatron component out. 
With this knowledge one can try to adjust the injection 
initial conditions so that they better match the currently 
corrected (nonideal) closed orbit. After this readjust- 
ment, the betatron motion is significantly reduced, i. e. 
by one order of magnitude or better. 

V. ACTUAL PERFORMANCE OF THE SOFTWARE 

We developed a program for carrying out the Yirst 
turn around strategy”. We installed it in the computer 
code PATRIS which served as a simulator which replaced 
a real machine. Special modules were built in PATRIS to 
simulate the progress of beam going around the lattice, 
aperture checks and BPM readings. Another module, 
based on expression (3) was developed to evaluate the 
kick angles 8, which were necessary to prevent the beam 
loss at certain point in the lattice. This module is capable 
of working on a real machine, once it knows the linear 
optics properties of the lattice by reading them from an 
appropriate database, and is completely independent of 
PATRIS and the ways it simulates closed orbit errors. 
The only item the module needs is a sequence of BPM 
readings. 

We performed many stringent tests of the software 
we developed. First of all, we wanted some redundancy so 
that the software can do more than just a bare minimum, 
provided there is enough strength available from the 
correctors to kick the beam properly. We tested this 
redundancy by shrinking the apertures to just 10% of 

their nominal values and tried to get the beam around. 
The software worked fine. Of course, more injection 
attempts were needed since the beam was lost much more 
frequently than under the normal operating conditions, 
but otherwise everything was normal. It is worthwhile to 
mention that these tests were being performed with the 
sextupoles at their full strengths and with realistic lattice 
errors. 

Next stage was a large-scale testing. It was done 
for 10 different Gaussian distributions of random lattice 
errors, with RMS values given by (1) and with a 2.5 u cut. 
The results were overwhelmingly positive. In most cases 
the code achieved its objective of making the first pass 
around in just 2 or 3 injection attempts. A little bit more 
was then needed for fine tuning of several correctors, 
only around the injection point, and for reduction of 
the magnitude of betatron motion. All this was done 
with the sextupoles at their full strengths. The quality 
of the orbit, established in this way, was excellent and 
only minute further corrections and adjustments may be 
needed. 

Finally, we tested our software with one or two 
monitors malfunctioning in which case the corresponding 
correctors were not energized. The software was capable 
of establishing the first turn around without any diffi- 
culties. Only the quality of the orbit established under 
these conditions was somewhat degraded, primarily in the 
immediate vicinity of broken devices. 

VI. CONCLUSION 

We have developed a linear method of orbit correc- 
tion which is more general than the simple three-bump 
method. As a minor drawback, it involves a large 123x 123 
matrix inversion for each plane, but on the other hand of- 
fers a very effective way of both establishing the first turn 
around and later corrections of the orbit. The quality of 
the orbit, established at the full sextupole strengths, is ex- 
cellent - under ideal simulating conditions which include 
BPM’s ideal in both sensitivity and placements, ideally 
placed and controlled correctors, simulated as thin lenses, 
ideal sextupoles which are also simulated as thin lenses, 
and no higher order nonlinearities, but with otherwise 
quite realistic lattice errors. 
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