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Abstract 

The diffraction radiation is caculated for a charge sheet 
moving past a conducting wedge with speed of light. The 
t,\vo-dilllensional problem is analyzed in the time-domain 
using the conical flow method which has been developed 
for supersonic aerodynamics. The method t.ransforms the 
wavy problem into a two-dimensional potential problem 
which subsequently is solved by conformal mapping. Field 
lines are shown for different geometries. 

I. Introduction 

‘l‘he inkraction between relativistic charges and environ- 
tnent is a problem of great practical importance and in- 
telectual interest. For simple geometries like semi-infinite 
pipes, pill-box arrangements, apertures in screens and so 
on many analytical approaches are known. Practically all 
are in the frequency domain where a good insight in the 
physical process is difficult to be gained. On the other 
hand, time domain solutions are possible only in a few rare 
cases when complete sets of eigenfunctions exist. This is 
referred to as the method of Condon [l]. It has been used 
by several authors, e.g. [a], to calculate the wakefields of a 
charge passing a pill-box cavity or the gap between two in- 
finit,cl plates [3]. F or a point charge excitation it was found 
that- the fields are confined to delta-function like wave- 
fronts. In a later paper [4] the results of [3] were used in 
order to guess the fields of a point cha.rge passing through 
an aperture in an infinite plat,e. Only recently, since nu- 
merical codes are available, it was realized, that in case 
of short, cha.rges passing through apertures the fields are 
not confined to wavefronts but spread out over the entire 
\-olunle of the velocity of light body. 

The present paper treats rigorously the plane problem 
of a charge sheet or a line charge moving past a conducting 
wedge. The charge moves with velocity of light. Due to 
thr “conical” character of the fields, i.e. they are indepen- 
dent, of radial distance in z&space, a separation of the 
wave equat,ion is possible and the fields can be obtained as 
an explicit, closed expression of elementary functions. This 
Inct~hod is called “conical flow method” and was developed 
by Husemann [5] for supersonic aerodynamics. Later Kel- 
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Figure 1: Sheet of charge passing a conducting 
wedge; a) before, b) after the wave front has rcachccl 
the wedge; c) charge parallel to the wedge. 

ler and Blank [S] applied the conical flow met,hod to treat 
the shock diffraction of acoustic pressure or electromagne- 
tic pulses by rigid wedges. 

II. Description of the Method 

A sheet of charge with a surface density u moves parallel 
to the z-axis with velocity of light. An ideal conductiug 
wedge of opening angle 2cu is placed in a distance cl, Fig 1. 
In order to explain the procedure we only discuss the case 
of Fig. Ia,b. The mathematical treatment, for the case in 
Fig. lc is analogous. 

The magnet#ic field of the charge is collstant, above and 
below the charge 

H = &Ho ei = + c, (1) 

as long as the wave front, has not reached the wedge yet. 
In front of the charge the fields are zero. When the wave 
front reaches the wedge a reflected and a diffracted field 
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originate, Fig. lb. The reflected adds to the incoming 
yielding 2Ho. The diffracted field is a cylindrical wave, 
where t,he wave front, called characteristic surface, 

*=e-cot=0 , Q = Jz” + Y2 (2) 

satisfies the characteristic equation 

qb; + @ - $2;: = 0 ) 

see e.g. [7]. The field jump across the characteristic surface 
[If] = H(inside) - H(outside) follows the relation 

(4) 

where dSo and dS are surface elements at positions ~0 and 
Q respectively. That means, the field jump across the wave 
front, is zero, since at the wedge corner, Q = 0, dSo = 0 
and [[Jo] finite. ‘The boundary conditions of the diffracted 
field are therefore 

2Ho for s/2 5 p < s 
for 7r 5 ‘p < 3~/2 and Q = cot 
for 0 < ‘p < 7r/2 - 2fx 

(5) 
aH, 
-=O for 

cp = 7r/2 and r/2 - 2a , 

aY OSeSc0t 

In order to solve the wave equation with boundary conditi- 
ons (5) we apply the “conical flow method”. The characte- 
ristic surface, equ.(2), is a cone in the zyt-space. Bound- 
ary values of HZ are constant along radial lines through 
the origin of t,he cone and are also constant on the wedge. 
Furthermore, any radial line crosses the surface t =const. 
at the same position y and p = Q/cot. It is therefore ob- 
vious to look for a solution H, within the conical sector, 
which is constant. along each radial line. In order to do so, 
we introduce “normalized” cylindrical coordinates 

p = Jz-T-y/cot 

tan p = y/z 
(6) 

such, that t#he diffracted fields are within a cylindrical sec- 
tor -3T/2 2 $0 5 7rp - 2cr, 0 5 p < 1, --co < 2 < +03 
for all instants t. The mapping (6) transforms the wave 
equation into 

(1 - $)$ 
1 a2H 

+ (1 - 21$);$$ + ---.A. = 0 
P2 ap2 

(7) 

which is already Laplaces equation for small p. With the 
mapping of Tschapligin [5] 

q=+h=+ (;$g’! (8) 
the interior of the sector is distorted such that (7) becomes 
Laplacian in the whole sector where 0 < q 5 1. The wave 

Ii, = I-lo II, = )I[, 

$1 

.I& = 2Il” 

Figure 2: Mapping of the cylindrical sector in the 
qcp-plane onto a cylinder in the rlC,-plane. 

problem has become a potential problem in polar coordi- 
nates q, cp with boundary conditions (5). 

A simple way to solve the problem is to map the cylin- 
drical sector in the complex z-plane onto the upper half of 
the w-plane 

2~ = rej$ = (Ze-jn/2)* , X = &, 2 = qeJv (9) 

and to complete the boundary condit,ions evenly on the 
full circle, Fig.2, such, that aH,/a$ = 0 is satisfied on 
the real axis. The mapping (9) shifts planes ~1 = 7r/2, 
(~2 = K, p3 = 2ir, 94 = 2~+ (r/2 - 2a) into planes $1 = 0, 
$2 = aX/2, $3 = 3~X/2, $4 = ?r. Finally, in the w-plane, 
we have the Dirichlet potential problem for a disk with 
boundary conditions as shown in Fig. 2. The solution is 
easily found by using the Poisson integral formula [8] 

H,(r,$)=2Ho J [P(r: I9 - 3) + P(r,d + $)] tll7 

0 

(10) 
1/12 

+ Ho / [P(r,d - $) + P(r,17 + $)I d29 

with 

P(r, a) = 
1 - r2 

l- 2rcoscu+7’2 

After integration we find H, in an explicit closed exprcs- 
sion envolving only elementary functions 

Hz(r, G) A-= 
Ho 

(1 -r2)siny 
~~~~~~(~+~2)COS~-~2PCOSIj+6iiT 

+ arctan (l + ~2) 
1 

:o:g! ;;c:(q) _ aX) + 62,) 

+ arctan (1 + $) 
i 

(1 - r2)sin 9 

cos 9 - 2r cos( 74 + TX) 
+ 63x 

1 
(11) 
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Figure 3: Lines of constant. H, for the problem of 
Fig. la,b. 

where we have to take 

&= ‘: 
{ 

if the argument of arctan is 
>o 
<O 

Equ. (11) together with (9), (8), (6) gives the diffracted 
field of the problem in Fig. lb. 

The problem of Fig. lc is solved in an completely analo- 
gous way with the boundary conditions as illustrated. The 
result for this case is 

Hz (r, $1 *-------= 
Ho 

= 2 i 

(l- r2)sinj7X 

arctan (1 + r2) cos 7rX - 2r cos ti + 6H I 

(12) 

III. Results 

The equations (11) and (12) determine the fields in the 
normalized circular sector e/ccl 5 1. They are valid for 
times 0 5 1 2 a/co. For t > a/co the cylindrical wave 
crosses the charge sheet and a constant field -2Ho has to 
be added in the segment below y = --a. Figures 3 and 4 
show lines of constant H, of the diffracted wave. They are 
field lines of the displacement current in case of the charge 
sheet excitation. Since E and D are related by a time 
derivative in the same way as charge sheet and line charge 
are related, the field lines show also E-fields in case of a line 
charge excitation as indicated in the figures. The H-field 
is constant outside the diffraction cylinder and indicated in 
Fig. 1. Obviously, it is zero in front of the pulse and fHo 
or 2110 elsewhere. Points, where either the incident pulse 
front. or the reflected pulse are tangent to the diffraction 
cylinder, are singular points with undefined field direction. 

As can be seen in the figures, the diffracted fields and 
the induced charges on the surface are spread out for a 
&function excitation. They are not confined to the wave 
front and differ therefore completely from the case where 
a line charge would exit from a conducting plane similar 
to t,he problem of ref. [3]. 

Figure 4: Lines of constant H, for the problem of 
Fig. lc. 

If the wedge degenerates to a plate, i.e. o = 0, the 
diffraction fields are symmetrical with respect to the two 
sides of the plates. That means the induced charges are 
symmetrical too. The total charge on one side of the plate. 
whichever side we consider, is equal to half t,he exciting 
charge. 
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