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Abstmct 

The Collector ring in the KAON Factory proposed at 
TRIUMF [l] is designed t o accumulate five 3 GeV proton 
pulses in order to match the time cycles of Booster (50Hz) 
and Driver (1OHz). The averaged beam current in the ring 
varies in steps at the injection of each pulse from Booster. 
RF cavities need to be retuned at every injection to main- 
tain the proper bunching voltage as well as the phase re- 
lation between the cavity voltage and the beam current. 
Since the Collector will be heavily beam-loaded and cavity 
tuning will be slow compared with jumps in beam current., 
each injection is expected to cause substantial disturbance 
to the cavit,y voltage and to the beam. The disturbance is 
called an inject,ion transient. This paper studies possible 
control schemes of the rf system during the injection pe- 
riod in the Collector by using an equivalent circuit model 
and numerical solutions of the coupled nonlinear differen- 
tial equations. The simulations are used to suggest suitable 
values for the fast feedback gain and the peak tuning rate. 
This paper is an abridged version of a design note [a]. 

The total current driving the cavity is It = I, + Ib + Ir = 
Itej”‘. The evolution equation for the phasors is: 

v+2(a+jw)V+(R2- w2 + 2jaw)V = 2cuR(& + jwIt) 
(1) 

A. Steady State Conditions 

In the steady state 4, = db = 4s = ~~ = 0 and the 
amplitudes are I ‘O, It, I:, I;. We define a reference point 
&, = 0 and use the minimum power condition $‘s = 0. 
Below transition energy, &, = -(n/2 + pb) where pLb is 
the synchronous phase angle. We can now solve (1) for the 
resonance frequency R and the generator current 1:. 

I. EQUATIONS FOR CAWTY VOLTAGE 

1: = (I/‘/R) + If sinpb - IT cos $j (3) 

qo is called the tuning angle and is positive so n > w when 
below transition energy. Evidently the tuning conditions 
will not change when feedback is applied if $f E 0, and 
this is the condition we adopt. 

Equations for cavity voltage response V when the cavity 
is tuned by varying the inductance L have been given by 
Wang [3]. We introduce the quantities !? = l/(X’) and 
Q = 1/(2RC) = (;2/(2Q), 1 w lere R is shunt resistance and 
C capacitance. The circuit equation is: 

affrr[L2Ih/fq= v[n'-4a~/n]+2V[a-i2/~]+~. 

B. Non-Steady State 

For the Collector, the term n/n is negligible for h/2~ less 
than 36 GHz/sec. Since the largest tuning rate we shall 
model is 3 GIIz/sec, it is clear that the time derivative of 
Q can be ignored. 

We shall introduce a general feedback If which is in- 
ject,ed into a summing point along with the generator cur- 
rent I,. W’e make a specific assignment to If later in the 
t,ext. Suppose a wave with angular velocity w will maintain 
synchronism with the synchronous particle. Then the cav- 
ity voltrage V, beam image current Ib, generat,or current I, 
and feedback current If can be written: 

We assume V(t) is slowly varying so p can be neglected 
compared with jw V. We suppose the conventional loops 
which control the phase and amplitude of the generator 
are slow so that i,/l, and 4, are small compared with 

w. Ib and 4b will be slowly varying since the synchrotron 
frequency (w,/Z x is much less than the radio frequency ) 
(i.e. w, << w). Hence these quantities can be neglected. 
The dynamics of t.he feedback have not yet been specified 
so we retain all terms in If, +r. Since N/W z l/(2&) terms 
in a/w can be neglect,ed compared with unity when Q >> 1. 

Suppose we set f$j = 4,. This has the effect of un- 
mixing the feedback, at least to first order. The voltage 
amplitude is controlled by Zj and the voltage phase is 
basically independent of 1,. Further, let us suppose that 
I, = -H x (V/R). Th is Ives a feedback similar to that g’ 
described by Lee [4]. Finally, the cavity equations with local 
proportional feedback are: 

v = VciJ v = qqej~LY&Mt) 

Ib zz I&t 1b = ~,(t),~~b,j4b(t) 

I, = I&“’ 
If = IfPt 

Ig rz I&)ej~)s,%W 
I~ = I,(qe3QJej4/(t) . 

l \Vork suppotted by Los Alamos Natioml Laboratory Institu- 
tionnl Supporting Research, under the auspices of the US Depart- 
ment of Energy. 

Qf Q = - V(1 + Ii) - VH x (iv/w) 

+R[I, COS(~~ - 4”) + Ib sin(db - 4” - fib)] (4) 
iv/ cy = tan[*(t)] + (H/w)(li/V) 

+(W’)[~,sin(& - 4”) - Ib=(@b - d’s - pb)](s) 

Let I0 = V”/R. Along with the assignment If = -HV/R 
goes the steady-state condition 1: = I’( 1+ H) + It sin pb, 

(2) 
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II. BEAM EQUATIONS 

\Ve consider rigid dipole oscillations of the beam. The syn- 
chronous energy is E,, and the beam energy is Eb. Let 
AE = Eb - E,. The rate of energy change is: 

d/dt(AE/i;) = e[V(t) sin@* + 4” - 4b) - V” sinpb]/2rh 

(6) 
IIere e is the electron charge. Let 77, = (l/r: - l/r:) be 
the slip-factor. The phase advance equation is: 

dh/dt = lo&/ . 

III. PHASE AND RADIAL LOOPS 

(7) 

The equations above (4-7) are supplemented by those for 
the analogue loops which control the generator current. 
For instance dd,/dt = Aus( The frequency deviate is 
controlled by the radial loop (dimensionless gain K,) and 
the phase loop (gain Ii, per second) according to: 

d 
rp x -A~LJ~ = 

dt 
Awg + 21ip(h - 4u) - p,“EJ If/rlwK,AE. (8) 

This equation defines the gains and their units. The mutual 
loop time constant is rP. The phase loop sets the damping 
rate and t,he radial loop alters the coherent frequency. 

IV. RESULTS 

Equations (4-8) were solved numerically for a variety of 
boundary conditions. The simulation results, 4b(t) -4”(t), 
are represent,ed graphically. The coordinate axes are de- 
fined as follows. The abscissa is the number of synchrotron 
oscillations for zero beam loading aud zero radial loop gain. 
The ordinate for phase is degrees, assuming a bucket of 
&180” for zero synchronous phase angle. The figures are 
supplemented by a commentary. 

A. Machine Parameters 

Wre now consider the effect of injection transients in the 
KAON Factory Collector ring. The injection beam phase 
angle is @b = 0, and the synchrotron frequency is 7 kIIz. 
The quality factor is Q = 5000 and R/Q = 100 ohm at the 
fundamental resonance. The harmonic nurnber of the ma- 
chine is 11 = 225. The radio-frequency is w/27r = 60 MHz. 
The natural cavity damping time is T, = l/o = 26 ;LS. 
The cavity voltage is 150 kV, implying the steady-state 
drive current is 1’ = 0.3 Amp. When all five batches are 
present, the beam current component at the radio fre- 
quency is I, - ’ - 6 A. Hence the peak beam loading ratio 
is I,O/I ’ = 20 and the incremental loading per batch is 
AI,“/I” = 4. ’ 

B. Injection Transients and Compensation 

Figure 1 shows the case of one batch already in the ring, 
and the arrival of a fresh batch. There is no local feedback, 
and no phase/radial control. The cavit,y starts to retune to 
the new equilibrium value irnmediat~ely after the inject.ion 

of the second batch. The incremental detuning is 30 kHz 
per batch, and the tuning rate is 150 MHz/set. The ar- 
rival of the new batch is such a large perturbation that 
the coherent phase motion is unbounded. Further, stabil- 
ity cannot be restored by simple-minded phase/radial or 
tuning loops. 

One possibility, figure 2, is to let the peak tuning rate 
increase so that, the cavity comes back on tune well before 
one phase-oscillation of the beam. Unfortunately, the min- 
imum value to restore bounded phase-oscillations is outra- 
geous: 3 GHz/sec and so this concept is impractical. The 
phase/radial loop is disabled. 

C. Voltage Proportional Feedback 

Figure 3 shows the effect of enabling the local propor- 
tional feedback with gain set at H = 100. In other respects 
t,he parameters are as for figure 1. The feedback reduces the 
cavity phase (in radian) and relative amplitude errors t,o 
a few parts per 1000. The synchrotron motion is bounded 
(db - #J” = f2”) but undamped. 

Figure 4, shows the effect of enabling the phase loop 
with critical gain K, = 2.333 per cavity damping time, 
and Jr’,. = 0. The phase-loop time constant is rP = 50,~s. 
The phase difference ($b - &,) is damped to f0.1’ in six 
phase oscillations, and the damage to the beam is negligi- 
ble. The frequency modulation depth is f10 kHz. Reducing 
the time constant rP or increasing the gain KP will reduce 
the oscillations still further. 

The fast feedback gain H = 100 far exceeds that required 
to produce a large coherent bucket, a value of H = 25 
would have been quite adequate. However, the phase os- 
cillations would be four times larger (*8’) and this is not 
acceptable. 

For the case of figure 4, the transient persists long af- 
ter the cavity has retuned; and this suggests that a slower 
tuning rate might still give acceptable results. This is con- 
firmed: in figure 5 the tuning rate is only 16 MHz/set. The 
phase angles 4b and 4, deviate from their nominal zero val- 
ues for as long as the cavity takes to retune, but the phase 
difference 4b - #+, (which is what counts) damps to zero 
just as quickly as when the t,uning rate is 150 MHz/set. 
The use of 16 MHz/set is only for example’s sake, and 
is not rneant to suggest the optimum. Ideally, the tuning 
time and phase oscillation damping time should be similar, 
suggesting an optimum tuning rate of z 30 MHz/set. 

The effectiveness of the local proportional feedback 
in reducing the amplitude error of the cavity voltage 
diminishes’ with the amount of beam current already cir- 
culating before arrival of a fresh batch. Consequently, when 
the fifth batch is injected the relative error is 3 times as 
great as when the second batch is injected. Since AV/Vo 
is less than I%, this is not a serious problem and could 
be rectified by increasing the feedback gain to the delay 
limited value of H = 200. 

‘The control over C& is not so severely compromised. 
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V. CONCLUSION 

The compensation of injection t,ransients in the Collector 
provides strong motivation to use local proportional feed- 
back with an open loop gain in excess of 100. When this is 
done, a tuning rate of 16 MHz/ set is adequate for injection 
transient compensation, as demonstrated in figures 4,5. 

It is seen that fast feedback with large gain is far more ef- 
fective than fast tuning in reducing the injection transients. 
A large fast feedback gain has already been recommended’ 
to reduce periodic transients (due to revolution harmon- 
ics close to the radio frequency) and we see that reduction 
of injection transients is anot,her reason for pressing to- 
ward the value H = 200. Note, however, that the feedback 
bandwidth3 scales with the gain; hence while H = 100 
needs 1.2 MHz bandwidth, H = 200 requires 2.4 MHz. 
Further, the power tube must be fully capable of sourc- 
ing the quadrature current demanded by the fa.st feedback 
during the 1.4 ms required for tuning. 

Care is required in choosing the gains and time con- 
stants of these loops. A first evaluation suggests a phase- 
loop bandwidth in excess of 20 kHz is required, (nearly 
3 times the synchrotron frequency) when the open loop 
gains are lip = 45 kHz and I\‘, < 1. However, more so- 
phisticated models with PID controllers might well lead to 
different conclusions for the loop parameters. 
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Fig.1: No transient compensation. 

2See section 4.2.5 of reference [I]. 
3The bandwidth is H times the natural cavity bandwidth. 
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Fig.2: Compensation by fast tuning. Fig.2: Compensation by fast tuning. 
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Fig.3: Proportional voltage feedback. 

3’~,,~1~..~‘,.~,‘~,r,‘~ ,I! b 

Synchrotron oscills 

Fig.4: Voltage feedback with beam-phase loop. 
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Fig.5: Voltage feedback with slow cavity tuning. 
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