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1. Introduction 

We consider a beam transport system in which the 
particle motions in the two transverse directions (x and y) 
are coupled. The evolution of the beam envelope in such a 
transport system, wit#h linear dependence of magnetic field 
on the t,ransverse spatial coordinates, has been considered 
by Chernin’ for a mono-energetic particle beam. Here, we 
arc interested in a beam with a distribution in energy in 
a magnet,ic field with nonlinear dependence on the spatial 
coordinates. Under the first condition, the spatial coordi- 
nate (.z) along the beam motion cannot be confused with 
the time variable. Since fast particles will overtake the 
slower particles as time evolves, the beam envelope is a 
function of both z and time (t). Therefore, the beam en- 
velope equations are a set of partial differential moment 
equations, instead of a set of ordinary differential moment 
equat.ions. It, is this aspect of the approach described here 
that distinguishes itself from the work of Chernin’ and that, 
of Channcll and coworkers2j3. The theory by Channel et, 
al. uses moment equations to model a three-dimensional 
beam bunch. For long bunches, however, it is impracti- 
cal t,o carry high enough longitudinal moments to model 
the oscillations within the bunch. In the following we will 
derive a relativistically covariant form of moment equa- 
t,ions, based on the work of Newcomb and Amendt and 
\I’eitzner5. 

2. Relativistic Formuation 

\l;e start with a time coordinate t and local Cartesian 
space coordinate (x’, x2, x3), replacing the usual coordi- 
nate (x, y, z), where x3 is measured along the beam motion 
direction and x1 and x2 are the transverse directions. We 
define x4 = ct, where c is the speed of light, so that space- 
time is pararnet,rized by ~9, p = 1,2,3,4. We use a summa- 
tion convent.ion, and we assume that, Latin subscripts and 
superscripts, i,j, k, 1, are summed from one to three, while 
Greek subscript,s and superscripts a.re summed from one to 
four. The space-time metric (ds)’ = dxidr’ - c2(dt)? bc- 
comes (ds)” = &pdx”gpy, where the non-zero elements 
of the mct,ric t,ensor gp,, are gij = 6i, and 944 = -1. 
The met,ric t.ensors gli,, and gfi”, which is defined so that 

VA - 
YpvY - E;, may be used to t,o raise and lower indices 

covariantly. The usual three velocity 2;* may be extended 
to a relativistic covariant four-velocity up by the defini- 
tions y-” = 1 - vizji/c2 and ui = yva,u4 = yc so that 
lPui, = -c2. 

The electromagnetic field tensor Fpy is antisymmetric 

and is given in terms of E’ and B’ as 

Ei = cFa4 = -cF~~, 

B1 = F23 = -Fz2, B2 = Fsl = -F13, B3 = F12 = -Fzl, 

while the Lorentz force on a particle of charge q is q(E + -3 
6’ x B)i = qF”f‘u,/y. The general form of the external 
magnetic field we are interested can be expressed as: 

B1 = Blo + Bllx’ + B12x2 

+ Blllx’x’ + B112x1x2 + B122r2x2, 

B2 = B20 + I32139 + B22z? 

+ B211x1x1 + B212x1x2 + B222x2x2, 

B3 = BsO + Balxl + Bs2x2 

+ B311x1x1 + Bs12x1x2 + Bsz3x I , 2 2. 

where all the coefficients B 10, f320, &o, BII: . . . . BE are 

functions of x3, with Rio the dipole, Bij the quadrupole, 
and Bijk the sextupole components. The beam distri- 
bution function, j(xp, ui), satisfies the relativistic Vlasov 
equation: 

[ 
g+iT.e-1-. 

m 

where m is the particle 
we can multiply Eq. 1 
Vlasov equation as 

c I?+v’xR ) 1 .Ei f=O, (1) 
mass. In a covariant, formulation, 
by y and rewrite the relativistic 

If? Q up- + -F”Pu 
dxp m (2) 

The volume element dw = du’du2du3/y in t,he four- 
momentum space is invariant under a Lorentz t,ransfor- 
mation. Since the transverse coordinates, x1 and x2 , arc 
invariant under a Lorent,z transformation, we define an in 
variant phase space volume element under a Lorcntz t,rans- 
format,ion to be dQ = dx’dx2du1du2d$/y, and a phase 
space average 

(X) = h-l J SfdR, (3) 
with h = s fdQ. ‘I‘1 ie 1 owest moment of the Vlasov cqua- 
tion (Eq. 2) gives 

&u3) + &(u4) = 0. 
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With Eq. 2 multiplied by uU and uUux then integrated 
over dR, we have: 

&JL( u3uV) + &h(u4u”) _. ;h(F”PU,,), (5) 

and 

&h( u3~~“ux) + &h(u4uYu”) = ;h((FY~~#) 
(6) 

+ (FXPupu”)), 
respectively. There are four independent equations repre- 
sc~~kd in Isqs. 5 and ten in Eqs. 6. EquaCons 4 to 6 are 
hicnlly the same as the fluid equations of Newcomb and 
Amcndt and Weitzner5 with the additional averaging over 
the t,ransverse coordinates. If Ffi” is independent of the 
t,ransverse coordinates, then Eqs. 4 to 6 can be reduced 
to a close system by assuming the third order correlations 
arc negligible, which is the st,andard approximation used 
in truncating most fluid equations. Since Fp”” depends on 
t11c transverse coordinates, Eqs. 5 and 6 cannot be closed 
without irkroducing the spatial moment equations: 

(7) u3xi) + &h(u4r”) = h(d), 

&( u3uVxi) + &h( u4uyxi) = h(d’ui) 

+ ~h(F%,,z”), 
(8) 

m 

Xld 

&jh( u3xixj) + $h(u”z”r~) = h(dd) + h(z’d), (9) 

for ilj = 1,2 only. 
\Ve also define the following second order correlation 

functions: 

[7Pd’] = h-’ / f(u@ - (d’))(d’ - (u”))dR, (10) 

. 
antI slrrular dcfinit,ions for the third order correlation func- 
tions. 

From t,hcse definitions: we have: 

(u~uV) = [u~d] + (7P)(uV), 

(u”xi) = [#xi] + (7P)(x”): 

(2xj) = [xfxj] + (xi)(xj), 

(ILW7LA) =[uW](uA) + [7Pd](d) + [uV](uq 

+ [71%LvuA] + (uq(u”)(uA). 
(11) 

ant1 ot,her similar expressions. 
I\Yth these definitions we can rewrite Eqs. 5 to 9, 

ignoring all third order correlations, as: 

p(~i’) = ;(F?L,) - h-‘(&h[ u3uy] + &h[u4uV]), 

(12) 

V(xi) = (ui) - h-‘( $h[u”a+] + &h[u4zi]), (13) 

V[u”ux] = ~((FY’u,uA) + (FX~r~puV) 

- (uX)(F%,) - (u”)(Fx”uJ) 

a - ([u3uV]- + [u4u”] &W) (14) 
8X3 

- (@*I& + I~4&&,cd,t 

V[uvxi] = ;((F v%pxi) - (x”)(FV”up)) + [u”ui] 

- ( [u3uV] & + [u4uV] &)(xi) 

- cruw; + [d#J,(d,, 

(151 

and 

zqrixj] =[xV] + [ XV] - ([u3xi]& + [u4x”]-&)(x’) 

a a 
- ([u3xj]- + [u4xj]-)(ui) 

8x3 ax4 ’ 
(16) 

where 2) = (u”) a W + (U 4 a. )= 1s the relativistic convective 
derivative. 

Physical meanings can be attached to the moments 
appeared in Eqs. 12 to 16. The first order moments (z’) 
and (z”) denote the centroid position, and (u’), (u”), (u”) 
and (u”) are associated with the beam current and density 
respectively. The second order spatial correlations [x”xj] 
with i, j = 1,2 define the transverse ellipic beam enve- 
lope. The second order momentum correlations [u~zL!-‘] are 
the thermal momentum/energy spread. The second order 
cross correlations [x’u”] are the current and density dipole 
moments. 

3. Space Charge Models 
A. Chernin’s Model 

A simple model can be introduced at this point to 
cast Eqs. 12 to 16 to a concrete form if FL’” is expanded 
to linear terms of x1 and I’. This system of twenty-eight 
equations is a close set of moment equations for the twenty- 
eight moments. The desired form of Fp” is obtained by 
expanding the magnetic field to linear terms of x1, x2 and 
employing Chernin’s space charge model’ for the electric 
field, which is given by 

El = i+?ld + 412x2), 
E” = &wl + iw2), 
E3 = 0. 

where p is the line charge density of the beam, qll = 

S/D. q22 = &/D,qlz = -[dx2]/D, D = So(S1 + 
Sz),Sl = [x1x’] + SO,& = [x2x”] + SO, and SO = 
([x1x1][x2x2] -[x1x212)a. With this model we can eval- 
uate the moments that involve Fp” in Eqs. 14 to 16. For 
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where A4 is a 6 x 6 matrix whose elements are of the form c,sample, we have the following expressions, including self 
magnetic field: 

(F’%,) = B3()(U2) - B2&3) 

- Bzl (z1u3) - B&%L~) 

+ P(Q11(X’U4) + n121~“~4))lcl(r)2, 

( F2%/J = -B30 (u’) + Bz()(u3) 

+ R11(21u3) + B12(z”u”) 

+ Ph2(Z’U4) + q22(~2u4))lcl(r)2, 
(17) 

(F’31Lup) = B20(u1) + Bzl(zlul) + B22(x2~1) 

- Bl&?) - Bll(X’U2) - B12(X2U3), 

(~4ic1Q‘) = -p(q11( xlu’) + n12(~2U1))lCl(r)2 

- P(412(~‘U2) + q22(~2~2))/c/(r)2. 

Equations 14 to 16 can be related to the second order 
moment equations of Chernin’ if we restrict them to the 
samc~ external magnetic field as in Ref. 1, i.e. BID = B2o = 
0 and no sextupole components. We can identify our no- 
t,at,ation [.?zlp] with CQ in Ref. 1 by the following rules: 
[IL%‘] = C2i,2j, [UiXj] = C2i,zj-l, [XiXj] = C2i-l,2jm1. 

Since [u31di] = [U”U~] = [u”&] = [u4xi] = 0 (for i = 1,2) 
for a mono-energetic beam with a delta function distribu- 
t,ion in u3, Eqs. 14 to 16 is the same set of equations as in 
Ref. 1, wit,h D equivalent to the ordinary time derivative. 
Not.ice that. in such a case, the ten second moments (cor- 
relations) in the transverse directions form a close system 
and are no longer coupled to the zeroth, first and other 
second moments. 

B. Cylindrical Model with Image Charges 

Chernin’s model does not take into account the ef- 
fect,s of t,he image charges of the metallic boundary nor 
the longitudinal component of the space charge fields. To 
const,ruct an improved space charge model we assume that 
the charge density, p, is given by a collection of charge 
unit,s: 

iv 

P = COi(‘n,t!9(~- C), (18) 

i=l 

where g is the distribution of finite size charge elements, 
e. g. truncated Gaussians, and the location of the charge 
c>lrments is assumed to be independent of 2s. Note that 
!I depends on zl, a:2 and 23, while ai depends only on x3, 
To illustrate how the decomposition is achieved, we use 
t.hc second order system as an example. To second order 
we have six spatial moments, therefore we have N = 6 
and a matrix equation to relate the coefficients ai with the 
spatial moments. 

1 (21) 
l1 p; ’ 
I I 

h4 = bf y1 
i) (19) Q 

(22I2) 

s 
xT&?xyg(z- x;)dxldx2, 

with Ic,l = 1,2 and m+n 5 2. Equation (19) can be easily 
inverted to express a; in terms of the spatial moments. 

To calculate the space charge fields due to the charge 
distribution, we have to find the Green’s function inside a 
metallic cylinder, in the beam frame: 

G(I,a?) zz ;c Jm(x:,n~)Jm(x,,$) 
m,n 

t,, [J:, (zCmn)]2 cosm(Q - O’) 

. exp(- 1x3 - xi/ F), 

where r and Q are the cylindrical counterpart of x1 and x2, 

J, is the Bessel function, z,, is the n.th zero of the Bessel 
function Jm anf a is the radius of the cylindrical tube. The 
electrostatic potential in the beam frame becomes 

4(Z) = 1 G(Z, a?)p(a?)d”x’, 

assuming the velocity spread in x3 is not import,ant. Trans- 
forming the space charge fields from the beam frame to the 
laboratory frame we have 

FlPll 0 = El/Y, 

F3~up = E2/7, (20) 

F3Q, = E37, 

where Ei are the components of the space charge electric 
field in the laboratory frame. After some algebra, the space 
charge contribution to (Fv~u,) can be written as 

(FVPu,) = h-l Cni(13)Jaj(r4)il,(rj!ii3r’, 

i,i 

where 4,(x$) are time independent precomputed integrals 
of g(G - ~7) and the Green’s function. In the bend, cor- 
rections due to first order toroidal effect can be evaluated 
using similar technique. It is interesting to note that space 
charge effects appear as bilinear terms here compared with 
the more nonlinear behavior in the Chernin model. 

* Work supportsed by DARI’A/DSO 
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