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Abstract 

WARP is an electrostatic particle-in-cell (PIC) code that 
is optimized for studies of space-charge-dominated beams. 
We use the code to understand a number of issues in 
HIF accelerators and transport systems, including: drift- 
compression in the presence of misalignments, axial con- 
finement, longitudinal stability, transport around bends, 
and thermal equilibration processes. In this paper we 
describe the code architecture and numerical techniques 
employed to enhance efficiency. We then describe our 
new simple algorithm for following a beam around a bend, 
and recent results on bent-beam dynamics and transverse 
emittance evolution. Finally, we describe the code’s most 
recent feature, a general-lattice capability structured to 
preserve the efficiency of the particle advance, and present 
initial results using it. 

I. Introduction 

In Heavy Ion inertial confinement Fusion (HIF) drivers, 
space-charge-dominated beams are to be accelerated and 
transported over large distances. WARP[l, 2, 3, 4, 5] was 
developed specifically for the study of emittance growth 
resulting from the nonlinear self-fields of such beams. 

This work has recently been described in the Proceed- 
ings of the International Symposium on Heavy Ion Inertial 
Fusion.[3,4, 51 In this Conference Record we briefly review 
the code concept, methods, and applications. We then de- 
scribe new capabilities: the inclusion of a bent beam and 
pipe into the particle dynamics and self-field, and a general 
accelerator lattice. Early results using these features are 
described; these suggest that it may be possible to trans- 
port an axially-cool space-charge-dominated beam around 
a sharp bend without unacceptable emittance growth. 

II. Code Overview 

The WARP code contains a number of distinct parts, in- 
cluding: a 3d PIC package, WARPG, which uses a “warped 
Cartesian” mesh in ~,y, z to describe bends; an axisym- 
metric r, z PIC package, WARPRZ; an envelope equation 
solver (used for loading a “matched” beam); and facilities 
for initialization, diagnostics, etc. In this paper we focus 
almost exclusively on WARPG. 

*This work was pmformed under the auspices of the U.S. D.O.E. 
by Lawrence Livermore National Laboratory under contract W-7405- 
ENG-48, and by the Naval Research Laboratory under Lawrence 
Berkeley Laboratory contract DEAC03-76SF0098. 

The simulation takes place in the laboratory frame. The 
computational mesh fills a moving window and is laid down 
anew at each timestep. The self-field is assumed electro- 
static; boundary conditions are those of a square metal 
pipe. A round pipe (via capacity matrix) is an option. 

In 3d, efficiency is a critical requirement; to this end we 
employ a number of means, summarized here: 

In leapfrog motion, if a particle were to land within 
a sharp-edged focusing or bending element on four steps 
while its neighbor did so on only three, they would receive 
dramatically different impulses. Thus, the advance incor- 
porates “residence corrections” for element forces which 
account for the fraction of the velocity advance step ac- 
tually spent within the element. This allows much bigger 
steps than otherwise would be possible. 

No mesh arrays for the electric field components are 
used; instead, the electrostatic potential 4 is differenced 
on a particle-by-particle basis, obviating three 3d arrays. 

The FFT fieldsolver is fully vectorized and uses no 
scratch space. The particle advance is vectorized. De- 
position of the charge density p is vectorized with length 
8, over cells overlapped by each particle. 

III. Summary of Applications 

In addition to the bent-beam modeling described below, 
current studies include the following areas: 

Drift Compression: (current enhancement resulting 
from a head-to-tail velocity gradient or “t,ilt”): Relative- 
ly small misalignments of the focusing quadrupoles can 
lead to significant off-axis displacements. Image forces and 
fringing fields can then induce emittance growth. We seek 
to learn how fast and how much the beam may be com- 
pressed without unacceptable emittance degradation.[l, 21 

Equilibration: We are examining the transfer of thermal 
energy between transverse and longitudinal motions. For 
certain ranges of physical parameters, a beam initialized 
colder in t (axially) than in 2, y (transversely) is observed 
to heat rapidly in t until T, is a large fraction of Tz,Y. This 
appears to be a collective process.[2, 31 

Axial Confinement, Nature of Equilibria: To follow 
a finite-length beam for a long time, it is necessary to apply 
an axial confining force. We have had success in modeling 
near-equilibrium beams that remain “quiescent” over runs 
as long as 175 lattice periods without significant emittance 
degradation in the simulation.[4] 
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Simulations of the MBE-4 Experiment: In this LBL 
experiment, emittance growth has been observed to ac- 
company aggressive drift compression. Using WARP, we 
have been investigating mechanisms (such as axial mixing 
and dodecapole fields) which may be contributory. 

Longitudinal Stability with Finite Gap Impedance: 
A new, fully causal model has been incorporated into 
WARPRZ, and we are beginning to study the effects of 
finite geometry on weakly unstable modes.[5] 

IV. Bent Beam and General Lattice 

We have developed a family of techniques for modeling 
bends. These are based upon following a particle’s position 
and velocity in a sequence of rotated inertial (laboratory) 
frames. An “exact” method, which is symplectic and in- 
dependent of aspect ratio, has been described previously, 
for both 3d and 2d (transverse) applications.[6] Here, we 
summarize the inexact, “simplified” method now in use.[3] 
We have also developed an efficient method for following 
a large number of particles through a general accelerator 
lattice in a PIC code, and briefly outline our approach. 

1. Bent-beam dynamics 

The radius of curvature of the reference orbit (usually 
the vessel centerline) is rc E h-‘. Time is the independent 
variable for particle orbits. The conventional (for acceler- 
ator codes) independent variable s is in WARP a depen- 
dent variable for orbits, as are z,y. In straight sections, 
s q z, while in bends, s - -r,B. The “radial” coordinate 
isx=r-r,; the unit vectors 2 and i evolve as a particle 
moves, and .are different for each particle. The axial speed 
is v, = -rO (we use subscripts z and s interchangeably). 
The axial position is advanced in time using: 

ds/dt = -r,e = (r,/r)v, . (1) 

In our coordinate system: 

d 212 
Zv” = r* +x 

i++{E+vxB}, . 

d 
Tit’” =-r. +x 

=+${E+vxB}, . 

Note there is no factor of two in the Coriolis force; parti- 
cle velocities retain their laboratory-frame magnitudes.[3] 
Considering only the “pseudc+force” terms, one obtains a 
pure rotation with the rate of change of the velocity angle: 

We thus need only augment the dipole (bending) field at 
each particle position with a “pseudo-gyrofrequency”: 

By -e By-EL. 
q r*+x (5) 

This folds the necessary back-rotation into existing coding. 
The algorithm is inexact because vv, and x change during 
the step, but is accurate enough for our needs; “residence 
corrections” on entry to and exit from bends are necessary. 

2. Bent-beam self-field 

Poisson’s equation in “warped” coordinates is [7]: 

$& (o+w$) + $ 
+ g& (&g) = -4*/J. (6) 

Expanding the derivatives, we solve this iteratively. At 
each iteration the 3d FFT Poisson solver inverts the domi- 
nant “Cartesian” second derivative terms. The latest avail- 
able iterate for Q (starting with 4 of the previous timestep) 
is used to explicitly compute the smaller “non-Cartesian” 
terms, which are brought into the right member and aug- 
ment p. One term, proportional to (ah/as)(&$/as), is in- 
cluded by a simple finite difference, assuming the change in 
h at bend entry/exit can be spread in s slightly. The itera- 
tion converges rapidly, typically reaching relative changes 
in 4 of 10e6 in two or three passes; this corresponds to 
a typical relative error in the Poisson equation of -lo-‘, 
which is more than adequate. 

It is necessary to obtain the true charge density from 
the “conventional” pc collected from the particles, using 
p = pcr3/r, since (in a bend) the separation in s of zones 
varies with x. Also, the axial field is E, = -(rI/r)&$/as. 

3. General accelerator lattice for PIC 

Until recently WARP allowed only a limited, highly reg- 
ular lattice; a general lattice of arbitrarily-located sharp- 
edged elements has now supplanted it. At each parti- 
cle location, the field from each type of lattice element 
(quadrupole, dipole, bend, etc.) is obtained algebraically 
and added to the total; residence corrections are includ- 
ed. Dipoles (fields) are independent of bends (curves in 
the reference orbit), but may optionally be inferred from 
them. Focusing in y by angled dipole faces is implemented 
via thin-lens corrections. Elements of different types may 
overlap each other. 

Since each particle is at different s, efficiency precludes 
searching for element data on a particle-by-particle basis. 
At the beginning of each timestep, a number of co-moving 
Id arrays, one for each property of each element type, are 
set. These arrays are comprised of cells having uniform size 
As; a cell contains data describing the nearest element of 
the corresponding type. Then, for each particle the code 
computes a cell index j using a greatest-integer function 
applied to its s/As. The properties of relevant elements 
are then directly available. For example, the position of 
the left edge (“start”) of the nearest quadrupole element is 
retrieved from cell j of array cquadzs. The rapid “gather” 
capability of (e.g.) the Cray X/MP is thus usable. 

V. Examples 

A first example illustrates the effect of bent-beam self- 
fields on a space-charge-dominated beam moving around a 
bend. The bend is 3.6 m (3 FODO periods) long, and has 
radius r* = 3.6/a = 1.146 m. The uniform bending field 
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of 1.375 T fills a half-space; it acts on the beam between 
s = 1.2 m and s = 4.8 m ( i.e., the dipole BY is superposed 
over the 20 cm magnets and 40 cm drifts of the FODO 
lattice). The undepressed tune (phase advance per lattice 
period) is uo = 60°, the depressed tune u = 20’; the ratio 
of space charge to emittance forces is about 6:l. The runs 
use a 64 x 64 x 128 mesh, with square walls at &9 cm; 54160 
simulation particles; and a timestep size Aht corresponding 
to 2 cm/step. The runs follow an axially cold “cigar” beam 
with a K-V transverse distribution[4], assuming singly- 
charged carbon, 5.2 A, lo7 eV (speed 1.27 x lo7 m/s). 
The beam starts out 1.5 m long; its ends expand due to 
electrostatic repulsion, but the rarefaction does not reach 
pulse center by the end of the run, after 300 steps (6 m). 

Figure 1 depicts the evolution of the mid-pulse x-x’ 
emittance for a straight beam (lowest curve); a bent beam 
in a straight-beam self-field, retaining only the Cartesian 
terms in Poisson’s equation (middle curve); and a bent 
beam in a consistent self-field (upper curve). The pulse 
center enters the bend 1/5th of the way through the run, 
at. t = 0.095 ,SS; shortly thereafter, the emittance jumps 
slightly. In the middle of the bend (and the run), sector- 
magnet focusing renders this (un-matched) beam very thin 
in z. The pulse center leaves the bend at t = 0.379 ps. 
Some of the structure in these curves is due to statistical 
noise. Nonetheless, it is clear that the emittance growth is 
small, but great,est for a bent-beam in a consistent field. 

X Emittance 8 , 

1.60r‘ 
1 

;fj , , , . , , , , j 

-* . 
Or 4 c-4 m =I- 

b time r-4 

Figure 1: Straight beam vs. bent beam in straight 
field vs. bent beam in bent field, simple bend. 

In a second example, we examine beam behavior in a lat- 
tice similar to one studied earlier for the upcoming ILSE 
experiments.[S] 0 ur lattice differs from that of the refer- 
ence; most notably, it uses sector magnets instead of “box” 
dipoles and is an imperfect achromat. For this system, 
‘~0 = 72’, c = 20°, and dipoles (20 cm) and quadrupoles 
(20 cm) alternate in a FOBODOBO lattice with full period 
1.2 m. The first dipole begins at z = 2.6 m, the last ends 
at 16.6 m (after 180’ of bending), and we end the run at 
18 m (900 steps). Here, we consider axialljr-cold and -hot 
CT, N Tl) beams. Results are shown in Figure 2; there is 
clearly emittance growth for the axially-hot beam (upper 

curve); although it appears to die out, in fact it is observed 
to couple into the y direction, and Q (not shown) grows to 
9.15 x 10B5 xm-rad as tz decays. An axially-hot straight 
beam in a similar lattice without dipoles is not observed 
to suffer emittance growth. 

2.0- 
X Emittance I I 

OLA I I * . 0 0 6 
b 
4 time 4 

Figure 2: Axially-hot vs. -cold beam, ILSE-like lattice. 

Note that these figures differ from those presented previ- 
ously in that they employ a new, superior emittance diag- 
nostic. This maps particle {x, v}‘s to a common s before 
taking moments. It allows particles from a wider range in 
s to be included with less spurious rotation of the phase 
ellipse, giving better statistics and much smoother plots. 

These results suggest that a carefully matched achromat 
design which takes self-field effects into account may be 
important. Nonetheless, we continue to be encouraged by 
the small emittance growth in the axially-cold runs, which 
use sharp bends, crude lattices, and unmatched beams. 
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