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NONLINEAR DYNAMICS OF ELECTRONS IN ALTERNATTING-SIGN TOROIDAT. MAGNETIC FIRLD

Yu.L. Martirosian, WM.L. Petrosion,
Yerevan Physics Institute, Armenia, USGR
At present the possibility of using toroidal A m(2k+1)
magnetic fields for the increase of intensity

widely discussed in
on acceleration

of accelerated beama is
acientific literaturc
physics.

In Refs [1,21 it was proposed to use a
time constant toroidal magnctic field as a
magnetic path of average energy induction
accelerator and storing rings, where the
vertical drift of particles was suppressed by
means of pairs of quadrupole lconses regularly
spuced along the torus. The use of an
alternating sign toroidal magnetic field as a

magnetic path in wide energy range of
accelerated clectron beams (from several keV
to some McV) was discussed in Refs [3,4]. In
such a system the vertical drift of
particles in a separate gection is
compensated by an inverse drift in the
ncighboring section. The toroidal magnetic

field was reported in {5,611 to be applied in

a modified betatron in addition to a
conventional betatron field at the initial
atage of acceleration with the view of
ensential enhancement of the current of

accelerated particles.

Tn the present work the nonlinear dynamics of
electrons in time-constant alternating-sign
toroidal magnetic field is conaidered on the
basis of Hamiltonian formalism.

Let N be the number of magnetic path periods

27R
cach of 2 l0 TR length, consisting of
sections of toroidal magnetic fields of
opposite directions. Here RO is the major
radius of the torus and 10 is the length of
one coil. The ends of toroidal solenoids are

assumed to be closely situated. Assuming that

10 << Ro (N>>1), one can write the vector
potential of the magnetic field of such a
configuration in cylindrical system of axes
(r,9,z) as [7]
00
Z (-1
A (r,9,z)--A 2k+1
r o [(r R)2 2]1/2 o
(1)
“x /"'"‘2‘“5’" “a
*Il T (r-R) tz *K‘ T cos(2k+1)N*
o . 3 19)
Jo
512)-A_ LR R
A (r,8,z)-A ——13% 5]
z o [ (r- R)2 2]1/2 o
& ey st EE o
*11[»1§—¢(r—a)2+z2 ]*Kl [Gk-ii~]cos(2k+l)N3
A.= 0O
[=4

where A = Ind
o 2

I - the current in coil windings
n - the number of loops per unit length
d = 2 - the minor diameter of torus
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Il (z) and Kl (z) are modificd first-order

Bessel functions

In the absence of electric field the
Hamiltonian function is known to be
1/2
—_— S 2 .
H=c {8 L9 mozcz (2)

N .
where p - the vector of canonical momentum

m - the rest mass of an electron

¢ - the specd of light

A>v the time-independent vector
potential determined by the

formula (1)

e - the charge of an electron

Ao the Hamiltonian function is not
explicitely time -dependent, it is an integral
of motion and we can equate it to the total
energy of an electron.
After the canonical transformation of
variablea (r,8,z)->(p,58,¢)
(# and ¢ are the polar coordinates in Lhe
cross-gsection of torus)
r -R = o cos
© (3)
zZ = o sin ¢
P=7" coswv - P sin «
z o Py
Pz gosln v+ chos @
one can reduce this problem to an
cquivalent one with simpler Hamiltonian
function
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where Yi=Pp s YQZ‘TT'; V& p ¢ are
new canonical momenta,
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corresponding coordinates,
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p - the momentum of an electron.

As the new Hamiltonian is independent of

v o=

Xn~ ¢, the corresponding momentum
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m~ @ + v hix,,x,)
¥a 9 172 = const
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that is an expression of Bush theorem of the
conservation of angular momentum. With the

initial conditions £ 03 X9q © t 1 we have

Va© 0 and the Hamiltonian could be written

in the standard form with variables
“action—-angle"”
?
vy y? 2
HOXy %, ¥ V)= ——t o Z by (%) ,%,)%
*h n~k(x1’x2) (6)

Using the series expansion of Bessel
function into the powers of argument [8]
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one can normalize the Hamiltonian by writing
it in the following form

H:HO+H2+H4+ _____ (7)
where 2
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The allowance in  the expression (7) for

Lerms up to the gquadratic Hamiltonian leads
us from canonical equations
(9)
Y S £ WO I
d- T8y, ? dr ax,. ’ =4
i i
to Hill equations with respect to X4
%, o+ -2[a + § (x.) 2 =0
1 - ot ) am Xgp) cos mx2] X =
m=1
¥oT Voot ¥ Xpg (10)
where the top dot denotes the
differentiation with reapect to
dimensionless variable @, the solution of
which is obtained with the help of Flokier

functions.

The points of unstable motion in the linear
approximation [4] are in reality narrow
strips which begin in the points

2 0% ay = ¥ k=1, 2, 3,.... (11)
on the positive semi axes a,-
and the

is almost generally stable. However, already
for Xg = 2 (i.e. the length of coil becomes

As it seen from (7) a, > ay motion

equal to its diameter) ag x ay and the
“islets” of unstable motion enlarge and we
approach the instability range.

Solving the equation (10) by means of Hill
or averaging method, one can obtain highly
accurate solutions of canonical equations
(9) after an appropriate canonical

transformation using the subsequent term of
expansion (7). This transformations and
final results are rather cumbersome, and it
is difficult to estimate and check them.
However, it is possible to draw conclusions
about the solutions (9) even without the
solution of these equations.

As in the normalized Hamiltonian (7) the
quadratic part is a function of fixed sign,
then taking it as the Lyapunov function, we

can conclude on the basis of Mozer theorem
[9] that the stability conditions

2% 8, # K% k=1,2, 3,..... (12)
ag > a;

are sufficient for the existence of

solutions of exact equations, which are
stable in the sense of Lyapunov stability.
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Fig.1. Electron radial oscillation

trajectories in alternating-sign
toroidal magnetic fields. A1l
parameters are given in the text

10

PRRT} Coyspa sy ua
longituninal oscillation

in alternating-sign
ficlda. All

given in the text.

Fig.2. Electron
trajecltories
toroidal magnetic
parameters are
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Shown in Fig.1 are the plots of radial

oscillations (vertical oscillations differ We asee in Fig.2, that samall amplitude
from the radial ones by the phase shift of periodical oscillations overlap the
7 / 2) versus the dimensionless time 7, which monotonous growth of longitudinal motion.
were obtained on a computer for the values The amplitude of these oscillations increase
of characteristic parameter v = 0.04; 0.4; with the growth of initial transverse
10.4. 1In Fig. 2 the dependence of velocities to values vtr/ Vlonz 1 / v and the

longitudinal oscillations on 7 is given for edging transient field of coils may serve
the same values of parameters. For the as a magnetic trap.

magnetic field intensity in the center of The restrictions on  maximum attainable
the coil H0:1500 Oersted (for warm magnets), electron energy stem from the vertical drift

RO: 150 cm, d = 4 cm, N = 30 (the length of within one element of periodicity. At the
th i1 is 15 ) . . application of superconducting solenoids one

€ col. 18 cm), the kinetic energy of can increase the magnetic field intensity by
Ek % 6 MeV corresponds to v = 0.04, and more than one order of magnitude and hence
Ekzlo kev corresponds to v = 10.4. In all essentially increase the energy of
th th 1 . . accelerated beams.

e cases_ he values of initial coordinates In Fig.3 the phase patterns of transverse
and velocities are ry~ Rp= 0.1 cm; 25=0.1 cm oscillations are given for the same values
v X v = 0.01v .. of the system parameters.
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