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RADIATIVE POLARIZATION IN HIGH-ENERGY STORAGE RINGS

S.R. Mane
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Abstract

Fleciron and positron beams circulating in high-energy storage rings
become spontancously polarized by the emission of synchrotron radi-
ation. The asvmplolic degree of polarization that can be attained is
strongly alfecicd by so-called depolarizing resonances. Detailed exper-
imental measnurcments of the polarization were made SPEAR about
ten years ago, hut due to lack of a suitable theory only a limited
theoretical fit to the data has so far been achieved. I present a gen-
eral formalism for calculating depolarizing resonances, which has been
coded into a computer program called SMILE, and use it to fit the
SPEAR data. By the use of suitable approximations, I am able to fit
both higher order and nonlinear resonances, and thereby to interpret
many hitherto unexplained features in the data, and to resolve a puz-
zle concerning the asvinmetry of certain resonance widths seen in the
data.

Introduction

It was predicied by Sokolov and Ternov [1] that electrons and
positrons circulating in high energy storage rings would become po-
larized by the emission of synchrotron radiation; this effect is now
called the “Soknlov-Ternov effect.” They solved the Dirac equation in
a homogenous vertical magnetic field and predicted an asymptotic de-
gree of polarization of 8/(54/3) ~ 92.4%. In practice, the polarization
is sometimes reduced from this value by so-called “depolarizing spin
resonances.” A formula for the polarization including these resonances
was derived by Derbenev and Kondratenko, [2] and is now known as
the Derbenev - Kondratenko formula. Experimental measurements of
the polarization, showing several resonances, were made at the storage
ring SPEAR 3. Ouly the first order resonances in these data have
heen fitted; |{] the widths of the rest have remained unexplained up to
now. A formalism to calculate the widths of arbitrary spin resonances
was given in Ref. [5], and a computer program called SMILE was
written hased on it. This program has been used to fit the SPEAR
data, after making various approximations, and I have used it to ex-
plain various puzzling features seen in the data. Some of this work
was presented in Ref. |6], and more details in Ref. (7], including new
theoretical predictions which could serve as a check on the theory.

General Remarks

The Derbenev-Kondratenko formula is [2]
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where P, is the equilibrium degree of polarization, p is the local
radius of curvature of the particle trajectory, 9 is the direction of

parlicle motion, b = & x #/]% x v},  is the spin quantization axis on a
trajectory, and the angular brackets denote an ensemble average over
the particle trajectorics and accelerator azimuth. This formula was
rederived, and the notation clarified, in Ref. [8]. The principal details
are given in Rel. [9]. The algorithm in Refl. [5] evaluates the vectors 71
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and (8n/87) using a perturbation expansion, to be described briefly
below. The various spin resonances are obtained by systematically
expanding the perturbation series. A copy of the data in Ref. [3] is
shown in the inset to Fig. 1. Note that the curve therin is a guide to
the eye, not a theoretical fit.

Calculation of Resonances

A brief description of the algorithm in Ref. [5], frequently called the
“SMILE algorithm,” will be given below. It treats all resonances, in
principle, in the approximation of linear orbital dynamics. A more
general algorithm which also treats nonlinear orbital dynamics has
been published by Yokoya [10]. A number of more limited algorithms,
which treat a subset of the resonances included in the above algo-
rithms, are given in Refs. [11] — [15]. T have proved the algorithms in
Refs. [5,11,12,13,15] to be mathematically equivalent, when restricted
to a common domain of approximation, in either Ref. [5] or [6]. Ref.
[14] has been shown to be equivalent to the rest in Ref. [17]. The
above are all analytical algorithms. A numerical tracking algorithm
has been presented in Ref. [16], which also treats arbitrary resonances.

1 now restrict attention to the SMILE algorithm [5]. I denote the
accelerator azimuth by . The equation of motion for 7 is
% =0xn, (2)
where (1 is the spin precession vector of the storage ring [18]. I decom-
pose 0 = iy + &, where (1¢ is the value of §i on the accelerator closed
orbit, and & describes the additional terms due to orbital oscillations
around the closed orbit. Let fig denote the value of 7 on the closed
orbit, and let Iy and rhg denote the two other linearly independent so-
lutions of Eq. 2 on the closed orbit: dip/d8 = (lg x Iy, etc. Numerical
solution of Eq. 2 for {lg, 10, 7o} is by now standard.

I now write & = nyly + 279 + Nafo, and define spherical harmonics
via Vi1 = F(n; + in3)/+v2, Vo = na. The equation of motion for Vy,
and Vp is

Wi 1%}

d o ,

J6 Vo =i JT Vo (3)
Vo V.1

The formal solution is [5]

Vi

Vo :T{exp(fmw.ﬂde')} ((1)) (4)

0
-1

The symbal “T” denotes a time-ordered, or #-ordered, product. To
obtain a practical solution, I expand the exponential in a power series,
and evaluate the resulting integrals term by term: this is the SMILE
perturbation series {5].

Fit to Data

A theoretical fit to the SPEAR data [3] is shown in Fig. 1. It was
produced using the SMILE program [5]. The details of the fit are
given in Ref. [7]. The locations of resonances are given by

v = ko + kv, + kavy + kav, . {5)
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lfere v is the spin tune and v;, i = z,7y, s, are the orbital tunes, The
ki are integers. including zero. Various resonances are identified by
the experimenters iu the inset to Fig. 1 [3]. The tunes were read
off from it, and used in the theortical fit, In fact two sets of tunes
were used, above and below 3.60 GeV, because the tunes were not
constant (hronghout the whole of Fig. 1. Another important fact
to note is that the resonance widths depend on imperfections in the
machine, so a set of distorted closed orbits was produced by using
different randam seeds, and the sum total of these results was used to
prepare the fit. This is an important reason why prediction of absolute
resonance widths is very difficult in general. A simple closed orbit
smoothing procedure was used, which consisted of suppressing the
Fourier harimounics of the closed orbit closest to the vertical betatron
tune (v, = 5.18). The global scale of the random kicks was choen so
as to approximately fit the resonance v = 3 + v, at 3.65 GeV. The
resulting r.m.s. clased orbit amplitude varied {rom 0.6 to 1.2 mm. In
addition, the r.m.s. vertical betatron tunespread was read off from
another graph in Rel. [3]. This was attributed to transverse nonlinear
tunespread, and a simple model of tunespread was introduced to fit
the nonlinear resonances v = 3 + vy at 3.605 GeV and v = 2v, - 2 at
3.686 GeV. After the inachine parameters had been fixed in this way,
all the resonances were calculated without further modifications.

Although a lot of the input for the theoretical fit involved guess-
work, because after nearly ten years detailed information was difficult
Lo find, it is still possible explain some of the puzzling features in
the experimental data, Note that the experimental curve in Fig. 1
is a guide to the eye, not a theoretical fit. Some depolarizing res-
onances are ideutified. The analysis in Fig. 1 reveals, in addition,
the cxistence of several more narrow resonances in the data, show-
ing that the experimental measurements were very precise. It appears
that data ignored as statistical noise experimentally actually were real
physics. In particular, one theoretical prediction is that the resonances
v=3+v,£2vu,, at 3.61 GeV and 3.69 GeV, should have approximately
cqual width. Here v is the spin tune and v;, ¢ = z, ¥, 3, are the orbital
tunes. It can be clearly scen that the two resonances above have very
unequal widths. By using SMILE, I am able to show that the data
around 3.69 GeV, drawn as one wide resonance in the inset to Fig. 1,
in [act consists of several narrow, nearly overlapping resonances. The
resonances v - 3 + vy & 2v, do in fact appear to have approximately
equal width, after the theoretical analysis. A more detailed fit to the
data in the vicinity of 3,69 GeV is shown in Fig. 2,

Turther details are given in Ref. [7]. In addition, the above reference
also contains some theoretical predictions about the behavior of the
resonance widths, which should be experimentally testable.
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Fig. 2 Resonance spectrum in the region around 3.69 GeV.
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