
THE GROUND TEST ACCELERATOR CONTROL SYSTEM DATABASE:
CONFIGURATION,RUN-TIMEOPERATION,ANDACCESS*

L. R. Dalesio
MS H&320, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

A database is used to implement the interface between the

control system and the accelerator and to provide flexibility in

configuring the I/O. This flexibility is necessary to allow the
control system to keep pace with the changing requirements

that are inherent in an experimental environment. This is not

achieved without cost. Problems often associated with using

databases are painful data entry, poor performance, and

embedded knowledge of the database structure in code

throughout the control system. This report describes how the
database configuration, access, conversion, and execution in

the Ground Test Accelerator (GTA) Control System overcome

these problems.

Database Configuration

In the GTA Control System, the database configuration
task provides an easy-to-learn, multiuse tool. This task uses a

menu-oriented operator interface. Menus are used extensively

to reduce the amount of knowledge needed to configure the

database. Figure 1 shows the screen used to define the process

points connected to an analog input card in the I/O controller,

At the top level, the user can create, report, modify, or delete

one of the portions of the distributed database. A directory of

all channels throughout the distributed control system by I/O

processor, record type, and alphabetized signal names is
available at the top level. An ASCII database save file can be

created with the report command, edited with any text editor,

and reentered through the restore command. At the lower

level, individual database records are created, reported,

modified, and deleted. Records can be created, reported, and

modified individually or from a signal list form. For a single

channel, a list of the individual fields is presented to the

application engineer. Range checking is provided for each

entry. A future modification will allow the priviledged user to

modify the run-time database and save run-time modifications

to the disk-based system. The database configuration task

produces the process variable directory, which is a listing of all

channels and their target processor, record type, and relative
address. This process variable directory is kept as a hash table

with linked collision lists. Access time into this table is critical

as it is used during operation for access to the database

records.

Database Access

Access to the distributed databases is made using the
record name along with the field name. The remote processors

convert the record name to a record type and memory address

with the information in the process variable directory. The
record name look-up is done at run time so that it can be

*Work supported and funded under the Department of Defense, L’S
Army Strate ic
Department o B

Defense Command, under the auspices of the
Energy.

SYSTEM: KLYRF Base Address Oxff3 100

ANALOG INPUT II0 Parameters
CARD TYPE: VMIVME-3100 SE
CARD NUMBER: 0

Name LIh’R 10

CATHODE AMP LIh-EAR 45.00
CATHODEIVLT LINEAR 120.00
MOD-ANODE-VLT LIh-EAR 75.00
COLLECT-AMP LIh-EAR 45.00
MOD-ANODE-A.MP LIh-EAR 20.00
HV-BIAS-KV LINEAR 20.00
ANODE-BIAS-KV LINEAR 2.000
BODY-AMP LINEAR 250.00
FIL-VLT LINEAR 40.00
FIL-AMP LINEAR 20.00
CAV TEMP
BODY TEhlP

K-DEGC 1000

NOT ASSIGNED
K-DEGC 1000

NOT-ASSIGNED
NOT-ASSIGNED
NOT-ASSIGn-ED

0 Volts

0.00 Amps
0.00 kV
0.00 kV
0.00 Amps
0.00 mAmps
0.00 kV
0.000 kV
0.00 mAmps
0.00 VAC
0.00 Amps
0 Degc
0 Degc

Modify Copy Delete NextCard PreviousCard ChangeScreen

Fig. I. A sample database configuration page.

converted directly to a memory address. This conversion time

is minimized through the use of a hash table directory. The

hash table is maintained through the database configuration

task. Hash table access is fast as long as the number of

collisions is low. The remote processors convert the field name

to a field type, field size, and field location with the
information in a field convert file. The field convert file is built

from an ASCII record description. It is in alphabetical order

and searched with a binary search routine. Both the process

variable directory and field convert file are kept in memory to

ensure the fastest conversion. Average conversions are

accomplished in approximately 550 ps. Any network entity

resolving a database field specification to a database access

address need only call this conversion routine once. The

structure returned from this routine is used for all subsequent

requests for that field’s data. Figure 2 shows how the database

access routines provide the control network with an interface

into the database. To further eliminate the need for database

knowledge from the requester, database access calls include

the format in which the data are desired. If the data are

desired as they exists in the database, the time to access them

is merely the time to access the network along with the time to

copy memory to memory. For data that are desired in a
different format, conversions and field manipulations are
performed.

Database fields are one of the following: floating-point,
l&bit integer, enumerated item, string, and no access.

Enumeration fields contain an index into a set of string values.

The menu is either derived from within the database record

(e.g., the value field of a binary input has a ‘zero’ string and a

‘one’ string in the database) or from a set of system menus

CH2669-O/89/0000-1693.$01.0001989 IEEE

© 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1989

(e.g., the card type in an analog input field). These fields. can
be requested as a single entity or an array of floating-point
values, 16-bit integers, enumerated items, or strings.
Enumerated items that are requested as strings, return the
menu item to which their value refers. In addition to the
conversion of the field, data can be requested that reflect the
alarm condition of the record, parameters from the record that
are used to graphically represent the value, and parameters
that are used to modify the value (e.g., for an analog output
value, the control parameters include the database control
limits: an enumeration field will return the menu from which
the new value is selected). The time cost of the conversion and
collection of additional parameters is used to purchase the
complete separation of the operator interface task, the
sequencer task, and any other data acquisition or control task
from the structure of the database. All that these tasks need to
know is the basic data types contained in the database. This
cost is kept at a minimum for adding the parameters for alarm
status, graphic display, and control by having the database
structure compiled into the code that accesses the database.
The database record C-structures are created along with the
field conversion file.

Run-time Operation

The database library routines use the C-structures to
provide the most efficient processing of the process I/O and
closed loop control. The database library routines’ connection
to the database is shown in Fig. 2. The beginning address of a
record is placed in a C-pointer to a structure. All subsequent
manipulation of the record is accomplished in the compiler.
Careful use of the C-register variables results in the most
efficient processing. The C-structure was used in place of
assembly language offsets to provide an easier path for making
changes to the structure of a database record. When a record
type’s structure is changed, a new C-structure is produced
automatically, all database routines are recompiled and the
database is reported and reentered through the new structure
using a database configuration utility.

New technology employed in the GTA Control System has
also enhanced the overall performance of the I/O interface.
The GTA I/O controller is based on the 68020 and contains a
68881 floating-point processor. The VME I/O is memory
mapped into the Vh4E memory space for quick access. The
software contribution to the performance improvement is the
VxWorks operating system, which services interrupts in 4 n.s
and performs subroutine calls in 10 us.

The changes in technology, along with careful attention to
timing costs, have resulted in an implementation that is both
flexible and able to handle change without undue pain and
performance degradation. Adding channels and changes to
parameters within channels is available during operation.
Setpoints, outputs, computer/operator control, alarm limits,
scan rates, archiving limits, and conversions can be changed
during operation. I/O channels and continuous control loops,
containing alarm checking and archiving, can be configured or
modified without programming. A database channel’s
structure can be changed with little pain and no programming.
Preliminary time tests using an I/O controller with a 68020 and

Put/Get

Variable
Directory

Process Records whose
values have been

Database changed

D-k: ,/----,

PUI :/Get

Put/Get Requests

Fig. 2. A data flow diagram of the I/O controller

Data
Process I/O

the 68881 floating-point processor during a l-second interval
are as follows:

4413 analog inputs read, converted, checked for alarms
13333 binary inputs read, converted, checked for alarms
12500 database accesses with no conversion
4139 database accesses to a field with control parameters
1591 analog input record and field name conversions
1806 binary input record and field name conversions

During these tests, the code was running at the highest priority.
The database access timing includes the time to execute in the
Ii0 controller and does not include the network overhead.
Further benchmarks need to be made on data monitors,
closed-loop control, and sequential control CPU usage. This
does show that 400 analog inputs and 1300 binary inputs,
scanned at a rate of once a second, use only 20% of the CPU.

Conclusion

Configuration of the database is accomplished using an
interactive tool that requires minimal training. The
configuration tool provides a variety of modification and
reporting facilities to aid the application engineers. Database
access routines provide a run-time binding to the database and
remove the need for code to know the structure of the database
in order to access the data. They provide this interface with a
minimum amount of overhead. Database scan routines are
compiled with knowledge of the database structure to
efficiently process the VO. Attention to the potential problems
of using a database along with increased processor bandwidth
have resulted in flexibility with excellent performance.

Future enhancements to this package will include a
graphic configuration tool that takes advantage of a point and
click selection mechanism with a graphic representation of the
I/O connections. This will provide the application engineer a
more intuitive way to configure the instrumentation. It will
further reduce the training time and the configuration time.

1694
PAC 1989

