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Abstract 

Neural Nets(NN) have been described as a solut,ion looking for a problem. In the last conference, Artificial Intelligence(A1) was 
considered in t,he accelerator context. While good for local surveillance and control, its use for large complex systems(LCSj was 
much more restricted. By contrast: NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to 
multi-loop feedback/forward control of faulty systems and therefore provide an idcal adapt,ive control system. Thus, where AI 
may be good for maintaining a ‘golden orbit: NN should be good for obtaining it via a quantitative approach to ‘look and adjust’ 
methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or 
errors as well as imprecise knowledgr or understanding of effects like annealing and hysteresis. Further, insights from NI\‘ allow 
one to define feasihility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications 
are discussed and several LCS of current interest are compared and contrasted. 

1. Introduction 
Whilr thrrr are many beam diagnostic schemes for on-line control 
and off-Iin? simulation, thrre have brrn no attempts to simulate 
a whole facility to predict quantities like int,egratecl luminosity 
or average, real data rates presumably because no one can 
compute the mean prohahility of failllr? [I] of LCS. The growing 
size and complexit,y has made real-time control so complicated 
a.nd hard to verify that even ‘trivial’ changes can make systems 
unworkable. Since this problem is Ilot limited to accelerators, it 
is clear that new concepts, hardware and software are needed. In 
the last, conference[Z] we explored AI for such reasons. Here we 
look at NN which are complementary to AI e.g. one finds rules 
for I,CS rather than following models that may he too simple 
or rigid. Reinterpreted and generalized. ideas from NN provide 
missing and necessary capabilities for future generation systems. 

1.1 Motivations and Disclaimers 
Physicists often ignore noblesst obligt[3] when other fields are 
considercd[3]. It may he excusable in this case due to the greater 
evil theory i.ca. by an equally pernicious problem in control theory 
that is widespread and largely ignored. In a sense, the ‘field’ 
doesn’t exist and so provides no antidotes for ad hoc arguments 
that, arise when old systems are upgraded or new ones proposed. 
The problem is: IIow to predict and guarantee the performance 
of LCS? To solve the problem rather tha.n shift it elsewhere, we 
first try to understand its origins to find means to deal with it. 

Finally, a word about terminology. Being interested in general 
n&works of ‘things’ such as neurons, transistors or people, it is 
often usrful to thiuk of them interchangeably. I hope this causes 
no problems. Clearly, a transistor is neither a neuron nor any 
other form of sentient protoplasm with or without. taxonomic 
definition. 

1.2 History and Description of iYN 

I&as on simulaiing the brain provide an interesting history. b’or 
us, the subject begins with lh(, lransistor( 1947) a simple device 
that, its tl(*vclopcrs colnparrd to the nciiron[4]. Their device was 
n~uch faster and more ccononlical per bit of information. The 
obvious problem was how to use it in large circuits to best ad- 
vantage. Thr simulation of the brain quickly twcarw acatlcmic 

because of thcl many applications resulting from the transistor’s 
size. reliabilit,y and power rcquircmcnts compared to the VaC11111Tl 

tube. However, it was the early fifties before the idea of the 
integrated circuit (IC) occurred and 1959 before one appeared. 

*Partially fulrded by (1 S. Dept. of EnPrgy cotltract DE-.4C03-7GSF’00515, 

Even so: it was the mid-sixties before circuit timing in IC’s 
surpassed discrete transistors. By then, the serial as opposed to 
parallel computing machine was well estahlished due to rapidly 
improving component switching times and the fact that many 
people werrn’t aware of what was or could be available. The sit- 
uation now seems reversed on both counts. The inherent capahiii- 
ties of the serial machinc[5] are no longer compatible with demand 
which explains the interest in ‘new’ materials like GaAsjG]. One 
reason for the slow progress with such materials is their lack of in- 
tegration with Si with its broad use and large capital investment. 
One can view the slow progress with NN or the transistor in re- 
lated ways. Another reason was st,ated recently in relation to the 
development of the transistor: “The field was held back mainly 
by the reluctance of engineers to try, or to learn, something 
new[7].” While work on new materials is important,, it is hard to 
overestimate the importance of work on new logic elements with 
more connectivity. 

Work by von Neumann in 1952[8] was the stimulus prompting 
this paper - if not the subsequent development of the field[9]. 
The acronym ‘NN’ originated from models of the neuron and its 
connectivit,y in the central nervous system. Applicability of such 
models to other problems such as parallel processing machines 
and their programming produced the acronym ‘PDP’ for Parallel 
Distributed Processing as described in the basic reference[lO] on 
this subject. 

1.3 Relation Between AI and NN 
Many distinctions have been made hptween AI and NN such as 
the ironic one that NN is not a branch of AI. Seymour Papert has 
described them as two distinct offsprings of cybernetics with AI 
being the more productive and popular until quite recently. The 
historical development is an interesting story which explains the 
clear hut controversial distinctions. Many are directly related to 
the available ‘hardware’ - the brain and conventional computing 
machine( Some distinctions which seem valid on technical 
grounds, at least for now, can be represented as follows: 

Serial Parallel 

Software Hardware 

Left Brain/CC Right Brain 

Deductive Inductive 

Vulnerable Reliable 

Figure 1: A Schematic Comparison Between AI and Nh’. 
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2. Reliability, Stability and Durability 
LC:Y rely on and sponsor a ‘specialist’ system and so risk being 
dorninatcd Iby their weakest links without effective feedback and 
redundancy. C’omputer and tclecorlfercncing are ways of increas- 
ing conlkcctivily in 0rgn:lizations. Grouping eqmts at, co~isol~~s 
ill a control rooni( or I~oarcllooni) is anothm. Such cullnoctivit~ 
is useful and must OCCIII’ but is inrfiicimt and dorsn’t, solve the 
problem. Real NN don’t simply fail or crash when a neuron dies 
lilic a (-‘C might,. Il:hile pxfoiniancc riiigllt, dctrrioratc~, it could 
iniproxre given time to adapt[lO]. 0 UC of mauy cxalnples follows. 

2.1 Importance of Connectivity - The ‘Rule of 100’ 

heurons fire ill x-1 *ix aiid ‘tlccisio;~;; l.alz about 100 steps e.g. 
rcsponsc tirncs arc 25100 11ls[l I]. If we cease functioning due to 
loss of drcision capacit,y P.g. contol of various functions, thrri for 
10” i~~~uroik iit the braill autl a losh rate of %=3X lo3 per day(2 
p(‘r iiiinutej xvc have a lift rspcctancy of 100 years assuming vc’ry 
lligli C’OIII:CY~ i\,ity. Assnll~irrg liloi (’ u(‘uro115 allo\vs 1iiure units of 
IOU \vitll dill;:riIlg roles ailtl locntiorls. Thus. whilr ,Ye n1ay llot 

uw tl1cr11 r!ll‘c~ct.iWi!~ \I? tlefiliitcly doll’t 1taVe illor<’ t.11au c:rlollgll! 

3. Prediction and Methodology 
\Ve nrcd a nlc%thod to drscribe various aspects of I,CS that alloys 
us to reduw tiieln to simpler forms while preserving important 
practical cllarxteristics. Graph tlltmry is c,spccially useful. 

3.1 Graph Theory - Undirected Graphs 

A c.on;~rctctl gral)ll C is coulposed of sets of 1iIlks anti vcrticcs 
{C, V} M.llicll caIl be cllaractehed by the number of vertices { rll’} 
each lia\.iug P legs. ThP tot,ai nulnlx~ of links is 2:V = ra 7ig 
alIt tiir iiunil~~f of loops I, is: 

L(G’) = 1 + ; -j-([ - ‘)Hf (1) 

Ck~nnectivity is defined by the minilnum r~ardinality of ritller the 
set of rlotics K( G’) whicll separate a graph into subgraphs or set of 
links X(C;) lvhich separate a node from the graph. Tilcse integc>r$ 
arc a n:(‘asurc of a grtipll’s Ilode and linli wilrlcrability so xv<’ 
may want to make them as large as pract,ical)lc. Ilowcvcr, t,ilere 
arc 1H.O WUst.raillts: t’ost aud cornp!crity wltic~h, for silul)lic,it,), 
v;(’ t,aIie as I~rci~ortiollal to tllc nuilllxr of linki, ~vilicil wc war11, 
to ulininbc~. This tliclioloniy icarls to co~lrol-ersics [12] due* 10 
iiiac!qualc Ill<'i\IiS lo asims difficulty antI cost colisistc~ntly. 

3.2 Reliability 
i\ 1mi.lic ularlj- uic~ful csl)rc’isioii[lS] for tllrt rc~lialJilit,y of a gral)ll 
Cl \\‘a5 giv(,u ill t1.c‘ cOntI:.Yt Of (‘!c’cf I.Olli(‘ llc%l \IOl.Iii: 

‘R(C) -i,*n~(:*;)i(l--l,,)n(i;-1) (2, 

1vll<~rc i is ali)’ link ailtl p, its rclialiility. (;*i ant1 Cl-1 arc gr,tljlls 
if,itll j colltri1ctr~,I a1lt1 drlctc4. Full dot? ill l’ig. 2 iif<’ ‘Ic~l~lrliIlal~ 
t liaf nrmt coillltlllili(.iLt(’ iuirl II is tlich prol)aliilit). of tloillg ho: 

rl;!=~l:/~t=O.!) l 2 0 d C . [[=[],,j!)O4!)() 

(A) 

I, ,= I: pL=o.!J m- I:=o.!w!No 

011~~ Cd!, Ill<ll\(~ bll~.ll glq’lli arl)itral ily rc,linlil(~ 1,111. i!o1. l~~~rfm.!. 
lliiuy iire ~II~~IYYMYI \vitli auytllilig 1.1~11 Jclils 01i<‘c ill cvc~ry IO” 
111 s l~lli iti 1.(‘S 1111s i.< tii’t(‘II ~II~~(YIII;LI~’ ,‘,g. il ‘i 01lly it S~YWI~I~‘S 
xv01 111 vf 1 Ili’lii i:l (I 5101 a<<’ rillg or 1 1ub‘s o[x’1 atioll of a higll-s:)c~c~tl 
II’ vl(~11lc~111 ill d llli.ilii‘i.ilIIi(~. b’ig. :I sll~i\.s iti1 c~\;atlll~li~ \rilll 1a1.g~ 
111( r(‘im’h ill s 011umi i\,ilJ-, ~0~1, aiirl c.ilillpl~‘sity \vitllorlt lc~lial)ility. 

121=2: 
1,*=4; pr=0.9 11=0.750513 I * 
711=2; 

11,=2; 
11:1=6; pt=o.9 

-xlfJ- 
12=0.790630 

n.,=l; 

(13) 
k’igurc 3: Alore <: olil~~licn:.~~ti Scrims-l’aralkl Graphs. 

3.3 Simple Cost Analysis 
(‘ollilmrilig I’ig. :3ri to 2r\ shoals a P/t ilili)l.“\.‘.:ll(‘l’t for a OS’% 
iIi(,reasc in cost wliilr 2l3 gi\rcs a 61% irilprov(‘lncut for a 100(X, 
increase in cost which raises the qu~‘stioii of rnultiplcxing. 

3.3.1 Single Link Redundancy of Varying Degree 
If one or more links arc’ atldcd in patxllcl with liilk p,, incrclasing 
the degree of two vertices by j c.g. (~2 = 4)’ (712 = 2. n2+j = 2) 
in Fig. 2A, thcrc> is a frxt.ion.4 increax: 

iR 

R = yJp' -h+,(l -P.,+-r(l - . ..) (3) 

(‘ost I~rcakcv(7i occur’i for: 

i,ll W ~ > -=+ s n; - 1 
0 

I’: 2 ____ 21 
where & is tlic, total cos(. for 111(, origiunl systm~ wit11 lV links a11rl 

reliabi1it.y N assiiiiiing nc\I’ liiiks equal ill cost and reiiahiiity i.cs. 

1’ ‘3 = Pt. For .V = 2, the brealievc~lr is pz ( i and for tlke cn.bc 
shomm in Fig. 2 with N = .i, pi 5 0.8. \Ve nerd to go to N = 10 
bd0re pz < 0.9 when all of the 1i:llis cost the sarnr. 

3.4 Graph Theory - Directed Graphs 

Regular graphs like Fig. 2, with all 01ml vrrtices of t,he same 
clrgrcc[l4], are ul~tlirected until one specifirs a sec1urnce of ordered 
pairs of vcrl,iccxs. \Vr% can th(‘ll Ypeali iri tcul~ of ilxcs or cycles 
as \vcll as iinlis alIt let I,, - p,, lk%wcm vertices (i, 1 j. AI] n- 
vcrks cycle C’,, is a path Iq$unillg and cutling OII tllca same node 
taking )L step. \\i, call 1l:is dcgl~ 1 i.e. (3 ut‘ siilll)ly L’,,. For 
r12-t,raversals or lx~riotls wc use C’i arlcl crui talk iri trrrris of an 
ordcwd src~ll~~~~c~’ of axi‘s <ir 1x’1 ioc!s wit11 hll:)- or super-periods. 

1”igul.e ,I: A Simplr. Sclic~ I)irc,c,tml I’~‘(‘tll)aCli (irap 

Fig. 4 is rrduc~il>lr to b’ig. 2.A kvl~(~i ant.iparallci pairs(annihilat ion 
loops) arr eclual to Iintlirrctcd linlis with pt. \Ve also allow pa to 
lx, a f(lnct,ion of rlI or tilllc> t so p; i p, (1/z). Degree of complexity 
is talml as tile lnininililn cardiiialitp of vcrtic,c,s I)ct,wcrn in/out 
Imlriiilals c’.g. t jlr sllortml directc~d Ijatll. 

3.5 Feedback - Stabiiit,y, Reliability and hIemory 
liltl.odil(.illg till:(killt 10111ic~~ ital)ility vii: f;~~tll~acl; \vilich iInpro\,es 
figures <If rll(sril as \vPII as >elial)ilit!, by illcl.c%a>iug l)andwidth. This 
iuc rcases tllc equi\xlcilt 11~ of ailtiparailrl iool~ blit also illtro- 
(lutes nlc~iilory. ~litniplllaf~iug directed graphs can generate feed- 
lk1~.1< loo1x wlli(.ll gPnc~rall>- c>sisl iii all syslcn~s !vit Ii at least one 
tl~~~w~rtl~~lil~ aud 0IIv iildq)c’lidwt variable. One tail associate de- 
pmtlcut variahlm wit11 qxm iiotlrs and iiitlep~udc~ut with input 
tczrminals. 111 L(:S wit.11 many vnriablcs of 110th kiuds(usually 
1now tliilri wc know or call colltrolj out nc~xls to minjmize alltl 
c~lr~~fuiiy Illunitor alit1 c‘oiit rol ilidcpmdmit \xriaGl(,s bllt. tilis is 
not ~~~~~~~~ssi~l ii). 11 II<’ for c0lil)iiligs 1~1 \\i’i’u cl(~~,,~~~d~~l~t varial)lcs. 
‘i’llis ib 011~’ uf iilc illorc I‘ll:~ditrn(~rll a: rbl)(‘(‘6: uf the tlmi$u procms 
<111(1 ii \Vll(~I~’ NV ill)]ill(‘b l)L,(.ilil<(’ 111<~r(~ art’ illt<‘llt i<,u,rl COili)lili~i 

c.6. colil.ro!l;rlJlc~ fccdl)aclt ili \I.c~ll as iull(zrmt 1uid ullilitc7~tlcd. 
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4. Acyclic Graphs - Neural Nets and Learning 
As indicated in Sect. 2.1, neural systems need only about 100 
steps for many complex, real-time tasks. People simulate NN 
on a CC or parallel computer(or coprocessor board) but rarely 
a ‘neuroromput,er’ such as shown in Fig. 5. It, proceeds from 
input terminals(receptor neurons) to logic units(brain cells) and 
produces outpllt patterns(on axons/motor neurons) from input 
I’attcrn~(dcrlclrites) and patterns of weights(synapses). Weights 
and states represent the knowledge base. Weights(or pi’s) occur 
only on inputs brcause of potential ambiguities and the directed 
character of the graph. Feedback, which can make the graph 
acyclic by autonomously changing weights, is not shown. 

With one output per unit a complete propositional calculus[8, 
lo] is possible. One can think of individual units as multi-emitter 
transistors or op-amps but a real transistor analog might use ~5. 
501< per neuron. With several levels, such systems can set weights 
i.e. learn and make decisions. A problem is how to determine 
weights in a changing or noisy environment when little is known. 

Inputs 

. 

Inputs 
. 

-----@1/Limlo--- 

Figure 5: Schematic General Neural Net with Learning 

4.1 Examples 
On? could take a set predicted by experts and vary it[2] or let 
them vary it to determine an expert system or automaton for a 
problem. One could diagnose fault modes, avoid random walk, 
maintain stability or improve ‘golden’ solutions(‘5] via real-timr 
feedback where weights transform measured orbit harmonics to 
magnet excitation harmonics. The training of PDF’ modelsjlO] 
on complicated subsystems like klystrons [15] is also possible. 

5. Discussion 
We were interested in understanding the problems and needs of 
LCS. hlany aspects were considered that can be summarized 
roughly by Fig. 1. With this split personality, optimal control 
is virtually impossible. Further, the split runs so deep that it 
has become a fundamental presupposition in t,he sense of R.G. 
CoIlingwood. NN, as a metaphor for the ‘other’ helps us find corn- 

plimentary ways. It provides each of us wit,h an almost ideal, i.e. 
totally transparent, control system. Ironically, this transparency 
lnay explain our oversight of this field. I quote A.N. Whitehead: 
“Civilization advances by extending the nulriber of important op- 
crations WC can perform without thinking.” Because ‘thinking’ 
is defined by the left side of Fig. 1, progress can be defined by 
the nllmber of problems we are able to pass to the right. Thus, 
by itself NN is not the answer any more than our current ‘id- 
iot savant’ system of central CC. However, it providcs(or will) a 
fundamentally different and necessary approach. 

By the law of multiplicative probability for serial systems, the 
more complex a system or unreliable its subsystems, the less the 
liklihood of success. Control of LCS by large CC’s has become a 
negative example. For accelerators, the storage ring is a positive 
rxample because it provides nearly ideal stationary time series 
based ou cycles, natural damping and feedback. Thus, it doesn’t, 
need a CC once trained which is all strong justification for SSC 
and negative for SD1 and low rep-rate, conventional colliders. 

It seems questionable to attempt higher accelerator energies 
with old techniques or systems even though they are easier to 
extrapolate reliably. Old systems provide good benchmarks to 
gauge new ones or to say where and how to upgrade. Scaling 
the Tevatron, with its present reliability, to SSC is an exam- 
ple. Another is the reliability of SLC klystrons(SLC Handbook) 
for a collider with 10 times the energy, 10 times the number of 
klystrons and orders of magnitude smaller sp0t.s. 

Ultimately, the goal is a method that is computable, consis- 
tent and decidable i.e. capable of computation, comparison and 
optimization. That LCS are generally indeterminant implies only 
that the design and control are inseparable because feedback, in 
one form or another, can subvert such effects when fast enough, 
clean enough and based on an adequate time history. Clearly, one 
needs new technology that integrates data acquisition, analysis 
and control in an autonomous way at all levels. 
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