
OBJECT-ORIENTED COMMUNICATIONS 

I,. J. Chapman 
Fermi National Accelerator Laboratory * 

P.O. Box 500 
Batavia, IL 60510 

MS 307 

Abstract 

OOC is a high-level communications protocol based 
on the object-oriented paradigm. OOC's syntax, 
semantics, and pragmatics balance simplicity and 
expressivity for controls environments. While natural 
languages arc too complex, computer protocols are often 
insufficiently expressive. An object-oriented 
communications philosophy provides a base for building 
the necessary high-level communications primitives like 
"T don’t understand" and "the current value of X is K." 
OOC is sufficiently flexible to express data 
aquisition, control requests, alarm messages, and error 
messages in a straightforward generic way. It can be 
used in networks, for inter-task communication, and 
even for intra-task communication. 

Overview 

Fermilab's control system's existing protocol for 
microprocessor communication uses a variable-oriented 
communications philosophy (i.e. communication is 
reading and writing each other's variables). OOC'S 
philosophy is that communication is objects sending 
each other messages and replying to those messages. 
This object-oriented paradigm is used in the 
programming languages Smalltalk, C++, Common LISP, and 
others. This paper presents an informal introduction 
to the paradigm and OOC's use of it. 

Objects and Classes 

Objects are software entities within processors. A 
typical OOC object might correspond to an acceierator 
device such as a vacuum pump. Such an object responds 
to standard messages like READ, SET, and TURNON, as 
well as to application-specific messages. When an 
object receives a message, it executes some code ca?lcd 
a method. Different kinds ("classes") of objects 
execute different methods for the same messages. For 
example, the code that turns on a vacuum pump might be 
very different from the code that turns on a power 
supply, but in both cases objects are responding to 
TURKON messages. The sender of the message csres only 
about turning on, not about the details of how that is 
accomplished. 

Every object has a class. The methods are 
associated with the class (i.e. all vacuum pumps do SET 
commands the same way). Every class has a superclass, 
from which it "inherits" methods. A new kind of vacuum 
pump which differs from the standard vwc?~um pump only 
in its SET method can easily be implemented as a 
subclass of the standard vacuum pump class. This new 
subclass would need a new method for SET messages but 
would inherit all ofher methods from its superclass, 
its superclass's superclass, and so on up the 
inheritance hierarchy. 

Every object contains its own private variables, 
ca!led instance varlablzs. The st;ucturc of these 
variables is determined by the class (e.g. all vac1:clm 
pumps have readings, settings, etc.). Each object has 
its own values for the variables (e.g. vacuum pump #I7 
is currently set at 27.4). Just as methods are 

* Operated by the Universities Heszarch 
Association under contract, with the U.S. 
Department of Energy. 

inherited from superclasses, so are instance variable 
structures. 

Objects are used not just for accelerator devices 
such as vacuum pumps. They are also used to represent 
more abstract entities such as PID ioops, finite state 
machines, and classes. For example, the vacuum pump 
class is itself an object. The instance variables for 
a class object include, among other things, the methods 
for the class! This tricky idea is typical of the way 
this paradigm uses abstract concepts in pJwerfu1 and 
generic ways. 

All objects are created dynamically. This is done 
by sending a CREATE command to the appropriate class 
object. Thus it is easy to create, say, a new PID loop 
"on the fly." Objects can be created by an operator 
typing a CREATE message, by other objects sending a 
CREATE message, by any task, or by OOC itself. 

Usually objects are passive in that they only act 
on receipt of a message. OOC also provides 
"volitional" objects which contain a task, and 
therefore can act on their own. For example, a PID 
loop object might run periodically, sending a READ 
message to its input object, transforming the resulting 
value, and then sending the new value to its output 
object in a SET command. 

Addressing Objects 

Objects can be addressed in several ways by an 
"object descriptor." Much flexibility is allowed; OOC 
routes messages using whatever information is given. 
The most primitive kind of object descriptor is simply 
the address of the object in memory. This is normally 
used only by other objects, typically by the object's 
creator and orner. Another kind is the object 
identifier a 4-byte integer. These object identifiers 
must be unique within a particular OOC speaker! but OOC 
itself does not require them to be globally unique. 
Each OOC speaker maps its object identifiers to object 
descriptors, t,.pically to the object's address, but 
perhaps to another OOC speaker. More elaborate object 
descriptors are used by objects on other nodes of a 
network. These can include network identifiers and 
nodes, and task identifiers and task names. Objects 
can also have ASCII names which are typically used by 
an operator typing OOC messages. 

OOC keeps track of these object identifiers and 
names using objects of the standard OOC-supplied class 
DICTIONARY. Several other standard classes are used, 
including ARCHIVES and HISTOGRAMS for recording 
significant events such as errors. 

Messages 

Messages have two parts, the "message type" and 
"message parameters." The message type (e.g. SET, 
TURlr'UE;) is the portion used to help select the 
appropriate method. The message parameters are as 
simple or complex as necessary, their structure being 
determined by the sender and understood by the 
receiving object. OOC itself has no expectations 
regarding message parameters. 

Replies to messages also have two parts, the 
"status" and the "result." The status indicates OGC's 
opinion of whether the message succeeded and, if not, 
hew it failed; the res:llt was generated by the method 
itself. OOC places no restrictions on results. 

Extensibility 

CH20hY-O/SO/~-1~3~$~1 .Ooci; 1Yi;Y IEEE. 

© 1989 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1989



OOC is extensible in that it comes with standard 
object classes, standard objects, and standard message 
types. Each application can add its own classes (which 
can be subclasses of OOC's standard ones), its own 
objects (of OOC classes or the application's own), and 
its own message types. Also, libraries of useful 
object classes will be written and used by more than 
one application. These should include control objects 
like finite state machines and PID loops, and also 
objects representing standard hardware such as 
terminals, LEDs, etc. 

Why Object-Oriented? 

The best argument supporting the object-oriented 
paradigm is that it allows knowledge to be better 
organized. For example, everything a system knows 
about valves is stored inside the valve class object. 
This includes their ability to be read and set, and 
exactly how to read and set them (i.e. the methods). 
Everything a system knows about a particular valve is 
stored inside the object representing that particular 
valve : its current setting and current position, for 
example. This "data hiding," the notion that data are 
accessible only by the object containing them as 
instance variables, also improves system reliability. 

Another advantage of objects is that they allow 
software entities within a processor to address each 
other in a standard way (the same way the outside world 
addresses them). For example, a PID loop gets its 
input by sending a READ message to its input object. 
This sort of thing cannot be hard-coded because an 
operator may wish to change the input to a loop, and 
not just to another channel, but to an entirely 
different kind of thing like the average of two 
channels. Such an average could be established as a 
new object of the AVERAGER class. 

In variable-oriented communications all one can do 
is read or write variables (or pseudo-variables). 
Active variables, which trigger some action when set, 
are then necessary to accomplish simple things like 
turning a pump on (one must "set" the pump's "on-ness" 
to "true" and hope that the pump somehow knows to 
actually turn on!). Such requests can be much more 
clearly expressed as messages (one sends a TUFtNON 
message to the pump). 

The inheritance hierarchy of classes and 
superclasses minimizes the coding necessary to add 
features to a system because the author need only write 
code describing how the new feature differs from 
existing ones. One outstanding example of how much 
effort this can save is the dynamic creation of 
objects. This is actually done by the CREATE method of 
the object at the top of the inheritance hierarchy. 
This means that this one piece of code allows ANY kind 
of object to be created dynamically! 

Inheritance also allows very generic objects to be 
created and used in different ways. Several times in 
the course of developing OOC, existing classes have met 
new, unanticipated needs. Dictionary objects are 
heavily used to support operator I/O, for example. 

Tagged Data 

OOC is built on a base of tagged data called 
molecules. Each molecule contains a tag which 
describes its data type. In addition to simple tags 
such as BOOLEAN and INTEGER, there are more complicated 
tags like MESSAGE for representing an entire OOC 
message. Most importantly, molecules with the special 
tag "#" contain any number of sub-molecules 
recursively. Thus arbitrarily large trees can be 
manipulated easily. 

Tags allow OOC to provide powerful generic 
functions for reading, printing, and evaluating any 
molecule. The generic dictionary objects map molecules 
to molecules. Archive objects record noteworthy 

(arbitrarily complex) events as chains of molecules, 
and are easily interrogated using a single generic 
match function. 

Another important use of molecules is the parameter 
portion of messages and the result portion of replies. 
Since molecules can be arbitrarily complex or simple, 
they are ideally suited for these uses. When a message 
is sent, OOC passes the parameter molecule to the 
appropriate method which generates the result molecule 
and returns it to OOC. 

Environment 

OOC messages and replies exist in three formats: 
ASCII, flat, and fluffed. That all OOC messages can be 
expressed as ASCII strings allows operators and system 
developers to type any possible message and get the 
reply as another ASCII string. Flat format is the one 
normally used for sending OOC messages and replies over 
ACNET, the network protocol, on token ring. Fluffy 
format is used internally by objects and involves 
pointers to substructures. 

In addition to terminals, networks, and local 
objects, there are some special senders and receivers 
of OOC messages. The most important is a set of tasks 
which translate between OOC and the existing data 
aquisition services of Fermilab's control system. 

OOC is a function library written in portable C to 
run on VAXes, Motorola 68OxOs, and Intel 80386s. 
Messages are sent and replies received via calls to 
these functions. The microcomputer versions use 
Microtec development tools, the VAX version uses DEC 
tools. OOC routines can be called from other languages 
as allowed by the tools. OOC uses the standard 
Fermilab Controls Department microcomputer operating 
system MTOS on microcomputers, and a very primitive 
program called FAKFJdTOS provided by the author for 
VAXes. 

Status 

OOC presently works on the VAX in single-tasking 
mode. The 680x0 version working in multi-tasking mode 
and translating to Fermilab's data aquisition services 
should work within a month or two. There are no 
definite plans to implement the network version and the 
Intel version. Major enhancements which will probably 
be implemented within six months include multiple 
inheritance, which would allow classes to inherit 
methods from more than one superclass. 

1632 PAC 1989


