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Abstract 

A large proportion of devices used to interact with charged- 
particle beams in accelerator or storage rings can be classified as 
pick-ups or kickers. These devices extract information about the 
particle motion or affect a change in the motion. One device used 
frequently as pick-up or kicker is made with two little plates with 
one or more terminations per plate. In this paper the structure with 
one termination per plate is examined. 

1. Charge and Current Induced on the Plates 

We consider a bunch of charged particles travelling inside a 
circular accelerator vacuum chamber. Assuming the radius R of the 
closed orbit to be much larger than the radius of the vacuum 
chamber we can treat the particles as travelling along a straight 
cylindrical pipe of radius b. 

Let z be the axis of the pipe and (r.8) the transverse coordi- 
nates. We can associate to the beam a charge and current distribu- 
tion 

p = NC 
“(r - ro) 
____ s(e - e,)fw l = (o,o$cp) (1) 

r 

where 
v = PC is the beam velocity; 
N is the number of particles in the beam; 
e is the particle charge: 

p;y fci: - 
IS the beam position in the transverse plane; 

VI) is a function depending on the bunch shape. 

The potential due to charge and current distribution is 

& = [O,O.P V(r,B.u)l (2) 

Equation (2) allows us to solve the problem through the only 
scalar Helmotz equation written in cylindrical coordinates for the 
smgle azimuthal harmonic Pm 

“(r - ro) 
v,,, = -INeT ~~ (3) 

r 

where q = k/y and the symbol s means fourier transform in the k- 
space. 

Equation (3) is an inhomogeneous Bessel equation with gen- 
eral solution 

vim = AI,, + BKJqr) + C,, (4) 

where I, and I& are modified Bessel functions. 
The particular integral C, is found to be 

C,, = -4NeRk) {L(qr,,)K,,,W - Kn,(qr,,)Mqr)} U(r,, - r) (5) 

where U(x) is the Heaveside function. 

*Work performed under the ausptces of the U S. Department of Energy 

By imposing the boundary conditions v, = 0 at r = b and that 
om is finite at r = 0 we get for the harmonic m of the potential in 
the region r. < r I b 

ii, = ANeT(k) Indqro) 
I,(qb) &l(qr)%(qb) - I,(qb)K,(qr)} 

(6) 

The surface charge density induced on the wall 

a(~,u) = g 1 &,5,(k) cos m(fl - 9,)&k”dk 
m=o 

(7) 

from the Gauss law 

(8) 

The surface current density induced on the wall is 

Jsi0.u) = 2 
s 

e&,(k) cos m(t3 - 0,)~““dk (9) 
m=il 

where 

J, = pea, (10) 

2. The Plate Equations 

Scalar and longitudinal vector potentials produced over the 
plate are derived from the M;xwell equations, assuming that the 
plate is perfectly conductive. 

5, = - ; p - vv 
I 

= 0 
‘S 

(12) 

The expansion of the potentials in even and odd harmonics 
gives 

o=C&, 
- [ s,=o 

V,cos mg8 + qmsin(y gel] (13) 

A, = 1 E, 
- [ m=o 

A,,cos mg8 + &..sinrF gOI] (14) 

A, = c &“I - [ “,=U A,sin mgt3 + &,,cos~~ go]] (IS) 

where g = 2rt&. 
Equations (11-12) when we take into account the expansions (13- 
21) give, in the frequency domain, the solutions. 

p m = g ,-jPz + 6,,p n, (16) 
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and 

AZ, = - Jl ~, (Ti,e-JP’ - 5 
m 

2”) (17) 

Aem = j mg ~b {q,e-JP~ - F;“,P’} (18) 

“,, = Q-Jb + ;,i+ (19) 

zz, = - E {z,,le-JP7 - $,,,@7} (201 

= 2m + 1 
A,, = -j ,, 

-k, 
b g {~mi,e-J?z + F;,,e’%} 

(21) 

Equation (12) is valid in the case that charges and currents are 
conserved. When we suppose to have current “sources” and/or 
“losses” in a generic poiyt (zp,Op) on the electrode then equation 
(13) modifies as follows 

0 + + k ; = -zd,, (f&,) (22) 

where ~~(0 ,LJ is the current density flowing “in” or “out” at 
locarion t Q p,zp) and Z, is the characteristic lmpendance of 
transmission line formed by the plate and the surrounding. 

2.1 Boundary Condition at the Termination 

For an electric termination at the point (t3p,zp) 

j, (Qp) = 2 tip - 0$5(L - Lp) 

the 
the 

(23) 

where VP is the potential at the point and Z,. the load impedance. 
Equation (22) with the condition (23) and the expansion of the 
potentials gives 

= -jk,, 2 V,6(0 - t3,)8(z - zp) 

The solution of (24) is found to be 

where 

(25) 

m-5) 

2 
(-5,, = __ CDS mg0 

E”,(PlJ P (27) 

= 2 2m+l 
Q,,, = ~ sin ~- EJ 

%,(PO 2 gp 
(28) 

To observe that V, in eq. (24) is the total voltage at Ihe 
localion of the lermination. given as the sum of all the harmomcs m 
and thus still an unknown. 

2.2 Boundary Conditions at the Ends 

We take into account the current induced hy the beam letting 
m equation (22) 

.j, = bJss(r - 2”) (29) 
whcrc J, 1s the surface current induced hy the beam at the ends z(, = 
z l,2. In the frequency domam. taking into account eqs. (14.16) 

= -j&'Z&(z - z. zEpep COS p(e - 0”) Gk7 

P 1 
Integration of both sides of (30) in the interval z0 f E when 

& -+ 0 gives for the first end at z = -1’/2 = zl. 

A,&) = -bZoPme-JkC” (31) 

and for the second end at z = +c/2 = z2 

A =,,, (z2) = bZ$,,,e+” 

prr = CQpm 
P 

(32) 

(33j 

with 

cos pea 
!& = E, {sinc(p - mg) T + sinc(p+mg) T/ (34) 

= 
h 

and sine(x) = sin(x)/x. assuming that z = 0 is at the center of the 
plate and that E is the length. 

2.3 Determination of the Potential at the Tcrminatlon 

Equations (25,26,31,32) written for the even and odd modes 
and for the two sides of the plate separated by the termination at 
L = zp,, give a system of eight equations In eight unknown 
quantltles. The solurion of the system gives in particular 

Z,, 16 4 
Aa:, = 2 ~ VpQ,,, p e - cos p 

z, 

+ 4bZgm 
k, 
p cos(p - k) ; 

Abi, = 2 3 VpQm - e 
44, -1; 

zf P 

+ 4bZ$‘,,, 
kJ 
p cos(p + k) f 

A = 4i sinpc 

(36) 

(37) 

(38) 

and, agam, several of the symbols can be either V or 5. 

Let us consider the case El = 0 in (13). In this case, only the 
even modes give contribution to V,, since 

v, = C&,V, (39) 
Ill* 

From (16) and with eqs. (36-38) 

v, = ~E,(@“‘P + ~‘me%) (40) 
m=a 

k, cos$ + zpjcosfi[~ - Lp) 
V, = - i 2 V, CE,,Q, ir + 

m=O sin PC 

- ibZ, x&,,P, : 

cos(-g - k) ; + cos(p + k) f 1 (41) 
m=O sin pr 
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which can be solved for VP to give, for the special case where also 
lt, = 0, that is the tcrminatton is at the center of the plate, 

- ‘bZo 1 - 
4J cos kc/2 

,E,P, - - 
, fr sm pCj2 

v, = - ““, 

1+ ; 5 Z%Q”, ; ;;;;g 

(42) 

This can also be written as 

vp = it0$30) (43) 

where 

i(w) = NeF(k) (44) 

is the beam induced current at the angular frequency w, and 

Qw) = zrq yo4,) z-~+z __.. -~ 
I ,, D!o) 

1s the effective plate impedance. The form factors 

G(r,,B,) = 2 1 2 ; s F,,, 
4(%) 

F, = ; &$,, ___ 
I I,(qh) 

(46) 

(471 

show the dependence on the beam position rclativc to the plate and 
on the geometry of the plate. 

The effective impendance expressed in the form of eq. (45) 
shows that it can be expressed as the paraltcl of two impedances, 
one bemy the terminalton ilself Zt. and the other given by 

(49) 

With a simiiar method it is straightforth. though quite cumber- 
some, to calculate the potential VP also for the case BP # 0. In this 
cast, also the odd modes will give contribution, but cqs. (43-45) 
and eq, (4X) remain valid. 

3. Discusston and Numerical Results 
A beam position monitor is made of two parallel plates. 

Typically 111~ difference of the termmation voltages is taken. which 
is then divided by the sum in order IO obtain the beam position. 

Inspection of (33) and (34) combined to the form factors (70. 
72) shows that there is clearly a cutoff in the plate response 
function given by jl = bq,. For the case of long wavelengths, only 
the mode m = 0 gives a significant contribution. 

For the spectal case fJr, = 0 for one plate, that is R, = R for the 
other 

VL=4F[] +~iar;tgyjj~~;]$ (50) 

% ‘PO 
2- sin - 

b 277 

.;ff; 

__- - (51) 0 2 4 6 
?2 

Fig, 3 The ratio Va/Vc versus beam displaccmcnt vo/b, 
for 60 = 0, and for diffcrcnt plate width cpo. 

which are valid for any value of ‘r/b between zero and 1. Figures 2 
and 3 show the behavior of VA and ratio VA/V1 accordmg to eqs. 
(50 and 51) versus r,,/b for different widths ‘p. of the plates. 
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Fig. 1 Geometry of the problem. 
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Fig. 2 The difference .ignd 1’~ divided by r/o = 4,Ve/C 
versus beam displacement r-o/b, for 00 = 0, and for 
different plate width ‘po. 
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