GENERAL ANALYSIS OF BEAM POSITION MONITORS*

G. Di Massa
Dipartimento Elettrico Universita' della Calabria 87036 Rende (CS) ITALY

and

A.G. Ruggiero

Brookhaven National Laboratory Upton, New York 11973

Abstract

A large proportion of devices used to interact with chargedparticle beams in accelerator or storage rings can be classified as pick-ups or kickers. These devices extract information about the particle motion or affect a change in the motion. One device used frequently as pick-up or kicker is made with two little plates with one or more terminations per plate. In this paper the structure with one termination per plate is examined.

1. Charge and Current Induced on the Plates

We consider a bunch of charged particles travelling inside a circular accelerator vacuum chamber. Assuming the radius R of the closed orbit to be much larger than the radius of the vacuum chamber we can treat the particles as travelling along a straight cylindrical pipe of radius b.

Let z be the axis of the pipe and (r, θ) the transverse coordinates. We can associate to the beam a charge and current distribution

$$
\begin{equation*}
\rho=N e \frac{\delta\left(r-r_{0}\right)}{r} \delta\left(\theta-\theta_{0}\right)^{f(u)} \quad \underline{J}=(0,0, \beta c \rho) \tag{1}
\end{equation*}
$$

where
$v=\beta c$ is the beam velocity:
N is the number of particles in the beam;
e is the particle charge;
$\left(r_{0}, \theta_{0}\right)$ is the beam position in the transverse plane;
$f(u)=f(7-v t)$ is a function depending on the bunch shape.
The potential due to charge and current distribution is

$$
\begin{equation*}
\underline{A}=[0,0, \beta \quad V(r, \theta, u)] \tag{2}
\end{equation*}
$$

Equation (2) allows us to solve the problem through the only scalar Helmotz equation written in cylindrical coordinates for the single azimuthal harmonic $\tilde{\mathrm{V}}_{\mathrm{m}}$

$$
\begin{equation*}
\frac{d^{2} \tilde{V}_{m}}{d r^{2}}+\frac{1}{r} \frac{d \tilde{V}_{m}}{d r}-\left(\frac{m^{2}}{r^{2}}+q^{2}\right) \tilde{V}_{m}=-4 N e f(k) \frac{\delta\left(r-r_{0}\right)}{r} \tag{3}
\end{equation*}
$$

where $\mathrm{q}=\mathrm{k} / \gamma$ and the symbol $\boldsymbol{0}$ means fourier transform in the k space.

Equation (3) is an inhomogeneous Bessel equation with general solution

$$
\begin{equation*}
\tilde{V}_{\mathrm{m}}=A \mathrm{I}_{\mathrm{m}}(\mathrm{qr})+B K_{\mathrm{m}}(\mathrm{qr})+\mathrm{C}_{\mathrm{m}} \tag{4}
\end{equation*}
$$

where I_{m} and K_{m} are modified Bessel functions.
The particular integral C_{m} is found to be

$$
\begin{equation*}
C_{\mathrm{m}:}=-4 N \operatorname{ef}(\mathrm{k})\left\{\mathbf{I}_{\mathrm{m}}\left(\mathrm{qr}_{0}\right) \mathrm{K}_{\mathrm{m}}(\mathrm{qr})-\mathrm{K}_{\mathrm{m}}\left(\mathrm{qr}_{0}\right) \mathbf{I}_{\mathrm{m}}(\mathrm{qr})\right\} \mathrm{U}\left(\mathbf{r}_{0}-\mathbf{r}\right) \tag{5}
\end{equation*}
$$

where $U(x)$ is the Heaveside function.

By imposing the boundary conditions $\tilde{V}_{\mathrm{m}}=0$ at $\mathrm{r}=\mathrm{b}$ and that \tilde{V}_{m} is finite at $\mathrm{r}=0$ we get for the harmonic m of the potential in the region $r_{0}<r \leq b$

$$
\begin{equation*}
\tilde{\mathrm{V}}_{\mathrm{m}}=-4 \mathrm{Ne} \tilde{f}(\mathrm{k}) \frac{\mathrm{I}_{\mathrm{m}}\left(\mathrm{qr}_{0}\right)}{\mathrm{I}_{\mathrm{m}}(\mathrm{qb})}\left\{\mathrm{I}_{\mathrm{m}}(\mathrm{qr}) \mathrm{K}_{\mathrm{m}}(\mathrm{qb})-\mathrm{I}_{\mathrm{m}}(\mathrm{qb}) \mathrm{K}_{\mathrm{m}}(\mathrm{qr})\right\} \tag{6}
\end{equation*}
$$

The surface charge density induced on the wall

$$
\begin{equation*}
\sigma(\theta, u)=\sum_{m=0}^{+\infty} \int \varepsilon_{m} \tilde{\sigma}_{m}(k) \cos m\left(\theta-\theta_{0}\right) e^{j k u} d k \tag{7}
\end{equation*}
$$

from the Gauss law

$$
\begin{equation*}
\left.\tilde{\sigma}_{m}=\frac{1}{4 \pi} \frac{\partial \tilde{V}_{m}}{\partial r}\right]_{r=b}=-\frac{N e}{\pi b} \tilde{f}(k) \frac{I_{m}\left(q r_{0}\right)}{I_{m}(q b)} \tag{8}
\end{equation*}
$$

The surface current density induced on the wall is

$$
\begin{equation*}
\mathbf{J}_{\mathrm{S}}(\theta, \mathrm{u})=\sum_{\mathrm{m}=0}^{+\infty} \int \varepsilon_{\mathrm{m}} \tilde{\mathrm{~J}}_{\mathrm{m}}(\mathrm{k}) \cos \mathrm{m}\left(\theta-\theta_{0}\right) \mathrm{e}^{\mathrm{jk} u} \mathrm{dk} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\mathrm{J}}_{\mathrm{m}}=\beta \mathrm{c} \tilde{\sigma}_{\mathrm{m}} \tag{10}
\end{equation*}
$$

2. The Plate Equations

Scalar and longitudinal vector potentials produced over the plate are derived from the Maxwell equations, assuming that the plate is perfectly conductive. ${ }^{1}$

$$
\begin{gather*}
\left.E_{\mathrm{tg}}=-\frac{1}{c} \frac{\partial A}{\partial t}-\nabla V\right]_{\mathrm{tg}}=0 \tag{11}\\
\nabla \cdot \underline{A}+\frac{1}{c} \frac{\partial V}{\partial t}=0 \tag{12}
\end{gather*}
$$

The expansion of the potentials in even and odd harmonics gives

$$
\begin{align*}
& \tilde{\mathrm{V}}=\sum_{m=0}^{\infty} \varepsilon_{m}\left[\overline{\mathrm{~V}}_{\mathrm{m}} \cos \mathrm{mg} \theta+\overline{\bar{V}}_{\mathrm{m}} \sin \left(\frac{2 \mathrm{~m}+1}{2} g \theta\right)\right] \tag{13}\\
& \tilde{A}_{z}=\sum_{\mathrm{m}-0}^{\infty} \varepsilon_{\mathrm{m}}\left[\overline{\mathrm{~A}}_{\mathrm{zm}} \cos \mathrm{mg} \theta+\overline{\bar{A}}_{z \mathrm{~m}} \sin \left(\frac{2 \mathrm{~m}+1}{2} g \theta\right)\right] \tag{14}\\
& \tilde{A}_{\theta}=\sum_{m=0}^{\infty} \varepsilon_{m}\left[\bar{A}_{\theta m} \sin m g \theta+\overline{\bar{A}}_{\theta m} \cos \left(\frac{2 m+1}{2} g \theta\right)\right] \tag{15}
\end{align*}
$$

where $g=2 \pi / \varphi_{0}$.
Equations (11-12) when we take into account the expansions (1321) give, in the frequency domain, the solutions.

$$
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{m}}=\bar{a}_{\mathrm{m}} \mathrm{e}^{-\mathrm{j} \overline{\mathrm{~F} z}}+\bar{b}_{\mathrm{m}} \mathrm{e}^{\mathrm{j} \overline{\mathrm{p} z}} \tag{16}
\end{equation*}
$$

$$
\begin{align*}
& \bar{A}_{z m}=-\frac{\bar{p}}{k_{0}}\left\{\bar{a}_{m} e^{-j p z}-\bar{b}_{m} e^{j p z}\right\} \tag{17}\\
& \bar{A}_{\theta m}=j \frac{m g}{k_{0} b}\left\{\bar{a}_{n} e^{-j \bar{p}^{2} z}-\bar{b}_{m} e^{-\bar{p}^{2}}\right\} \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
& \overline{\bar{V}}_{\mathrm{m}}=\overline{\overline{\mathrm{a}}}_{\mathrm{m}} \mathrm{~m}^{-\mathrm{e}^{-\overline{\bar{p}}}}+\overline{\overline{\mathrm{b}}}_{\mathrm{m}} \mathrm{e}^{\mathrm{j} \overline{\bar{p}}} \tag{19}\\
& \overline{\overline{\mathrm{~A}}}_{\mathrm{zm}}=-\frac{\overline{\overline{\mathrm{p}}}}{\mathrm{k}_{0}}\left\{\overline{\overline{\mathrm{a}}}_{\mathrm{n}} \mathrm{e}^{-\mathrm{j} \overline{\overline{\mathrm{~F}}} \mathrm{z}}-\overline{\overline{\mathrm{b}}}_{\mathrm{m}} \mathrm{e}^{\mathrm{i} \overline{\overline{\mathrm{~F}}}}\right\} \tag{20}\\
& \overline{\overline{\mathrm{A}}}_{\hat{\theta} m}=-\mathrm{j} \frac{2 \mathrm{~m}+1}{2 \mathbf{k}_{0} \mathrm{~b}} \mathrm{~g}\left\{\overline{\overline{\mathrm{a}}}_{\mathrm{m}} \mathrm{e}^{-j \overline{\mathrm{p}} \mathrm{z}}+\overline{\overline{\mathrm{b}}}_{\mathrm{m}} \mathrm{e}^{-\overline{\overline{\mathrm{F}}}}\right\} \tag{21}
\end{align*}
$$

Equation (12) is valid in the case that charges and currents are conserved. When we suppose to have current "sources" and/or "losses" in a generic point (z_{p}, θ_{p}) on the electrode then equation (13) modifies as follows

$$
\begin{equation*}
\nabla \cdot \underline{A}+\frac{1}{c} \frac{\partial V}{\partial t}=-Z_{0} j_{S}\left(\theta_{p}, Z_{p}\right) \tag{22}
\end{equation*}
$$

where $j_{S}\left(\theta_{p}, z_{p}\right)$ is the current density flowing "in" or "out" at the location (θ_{p}, z_{p}) and Z_{0} is the characteristic impendance of the transmission line formed by the plate and the surrounding.

2.1 Boundary Condition at the Termination

For an electric termination at the point $\left(\theta_{p}, z_{p}\right)$

$$
\begin{equation*}
\mathrm{j}_{\mathrm{s}}\left(\theta_{\mathrm{p}}, z_{\mathrm{p}}\right)=\frac{\mathrm{V}_{\mathrm{p}}}{Z_{\mathrm{T}}} \delta\left(\theta-\theta_{\mathrm{p}}\right) \delta\left(z-z_{\mathrm{p}}\right) \tag{23}
\end{equation*}
$$

where V_{p} is the potential at the point and Z_{F} the load impedance. Equation (22) with the condition (23) and the expansion of the potentials gives

$$
\begin{gather*}
\sum_{\mathrm{m}} \varepsilon_{\mathrm{m}}\left\{\left[\frac{\partial^{2} \overline{\mathrm{~V}}_{\mathrm{m}}}{\partial z^{2}}+\overline{\bar{p}}^{2} \overline{\mathrm{~V}}_{\mathrm{m}}\right] \cos \mathrm{mg} \theta+\left[\frac{\partial^{2} \overline{\bar{V}}_{\mathrm{m}}}{\partial z^{2}}+\overline{\bar{p}}^{2} \overline{\bar{V}}_{\mathrm{m}}\right] \sin \left(\frac{2 \mathrm{~m}+1}{2} \mathrm{~g} \theta\right)\right\}= \\
 \tag{24}\\
=-j \mathbf{k}_{\mathrm{o}} \frac{Z_{0}}{Z_{\mathrm{T}}} \mathrm{~V}_{\mathrm{p}} \delta\left(\theta-\theta_{\mathrm{p}}\right) \delta\left(z-z_{\mathrm{p}}\right)
\end{gather*}
$$

The solution of (24) is found to be

$$
\begin{gather*}
A_{z m}^{+}-A_{2 m}^{-}=-\frac{Z_{0}}{Z_{T}} V_{p} Q_{m} \tag{25}\\
V_{m}^{+}-V_{m}=0 \tag{26}
\end{gather*}
$$

where

$$
\begin{gather*}
\overline{\mathrm{Q}}_{\mathrm{m}}=\frac{2}{\varepsilon_{\mathrm{n}} \varphi_{0}} \cos \mathrm{mg} \theta_{\mathrm{p}} \tag{27}\\
\overline{\overline{\mathrm{Q}}}_{\mathrm{m}}=\frac{2}{\varepsilon_{\mathrm{m}} \varphi_{0}} \sin \frac{2 \mathrm{~m}+1}{2} g \theta_{\mathrm{p}} \tag{28}
\end{gather*}
$$

To observe that V_{p} in eq. (24) is the total voltage at the location of the termination, given as the sum of all the harmonics m and thus still an unknown.

2.2 Boundary Conditions at the Ends

We take into account the current induced by the beam letting in equation (22)

$$
\begin{equation*}
\mathrm{j}_{\mathrm{s}}=\mathrm{b} \mathrm{~J}_{\mathrm{s}} \delta\left(z-\mathrm{z}_{0}\right) \tag{29}
\end{equation*}
$$

where J_{s} is the surface current induced by the beam at the ends $z_{0}=$ $z_{1,2}$. In the frequency domain, taking into account eqs. (14-16)

$$
\begin{gather*}
\sum_{\mathrm{m}} \varepsilon_{\mathrm{m}}\left\{\left[\frac{\partial^{2} \overline{\mathrm{~V}}_{\mathrm{m}}}{\partial z^{2}}+\overline{\mathrm{p}}^{2} \bar{\nabla}_{\mathrm{m}}\right] \cos \mathrm{mg} \theta+\left[\frac{\partial^{2} \overline{\bar{V}}_{\mathrm{m}}}{\partial z^{2}}+\overline{\bar{p}}^{2} \overline{\bar{V}}_{\mathrm{m}}\right] \sin \frac{2 \mathrm{~m}+1}{2} \mathrm{~g} \theta\right\}= \\
=-j k_{0} Z_{0} \mathrm{~b} \delta\left(z-z_{0}\right)\left[\sum_{\mathrm{p}} \varepsilon_{\mathrm{p}} \tilde{\sigma}_{\mathrm{p}} \cos p\left(\theta-\theta_{0}\right)\right]^{\mathrm{e}^{j k z}} \tag{30}
\end{gather*}
$$

Integration of both sides of (30) in the interval $z_{0} \pm \varepsilon$ when $\varepsilon \rightarrow 0$ gives for the first end at $z=-\varepsilon / 2=z_{1}$.

$$
\begin{equation*}
\mathrm{A}_{\mathrm{zm}}\left(\mathrm{z}_{1}\right)=-\mathrm{b} Z_{0} \mathrm{P}_{\mathrm{m}} \mathrm{e}^{-\mathrm{jk} \mathrm{e} / 2} \tag{31}
\end{equation*}
$$

and for the second end at $z=+\ell / 2=z_{2}$

$$
\begin{align*}
A_{\mathrm{zm}}\left(z_{2}\right) & =\mathrm{b} Z_{0} P_{\mathrm{m}} \mathrm{e}^{-\mathrm{jk} / 2} \tag{32}\\
\mathrm{P}_{\mathrm{m}} & =\sum_{\mathrm{p}} \tilde{\sigma}_{\mathrm{p}} \mathrm{~h}_{\mathrm{pm}} \tag{33}
\end{align*}
$$

with

$$
\begin{gather*}
\overline{\mathrm{h}}_{\mathrm{pm}}=\frac{\cos \mathrm{p} \theta_{0}}{\varepsilon_{\mathrm{m}}}\left\{\operatorname{sinc}(\mathrm{p}-\mathrm{mg}) \frac{\varphi_{0}}{2}+\operatorname{sinc}(\mathrm{p}+\mathrm{mg}) \frac{\varphi_{0}}{2}\right\} \tag{34}\\
\overline{\overline{\mathrm{h}}}_{\mathrm{p} 11}= \\
=\frac{\sin p \theta_{0}}{\varepsilon_{\mathrm{m}}}\left\{\operatorname{sinc}\left(\mathrm{p}-\frac{2 \mathrm{~m}+1}{2} g\right) \frac{\varphi_{0}}{2}-\operatorname{sinc}\left(p+\frac{2 \mathrm{~m}+1}{2} \mathrm{~g}\right) \frac{\varphi_{0}}{2}\right\}
\end{gather*}
$$

and $\operatorname{sinc}(x)=\sin (x) / x$, assuming that $z=0$ is at the center of the plate and that ℓ is the length.

2.3 Determination of the Potential at the Termination

Equations ($25,26,31,32$) written for the even and odd modes and for the two sides of the plate separated by the termination at $z=z_{p}$, give a system of eight equations in eight unknown quantities. The solution of the system gives in particular

$$
\begin{align*}
& \Delta a_{m}^{+}=2 \frac{Z_{0}}{Z_{T}} V_{p} Q_{m} \frac{k_{0}}{p} e^{i p_{2}^{l}} \cos p\left(\frac{\ell}{2}+z_{p}\right)+ \\
&+4 b Z_{0} P_{m} \frac{k_{0}}{p} \cos (p-k) \frac{\ell}{2} \tag{36}\\
& \Delta b_{m}^{+}= 2 \frac{Z_{0}}{Z_{T}} V_{p} Q_{m} \frac{k_{0}}{p} e^{-i p \frac{1}{2}} \cos p\left(\frac{\ell}{2}+z_{p}\right)+ \\
&+4 b Z_{0} P_{m} \frac{k_{0}}{p} \cos (p+k) \frac{\ell}{2} \tag{37}\\
& \Delta=4 i \sin p \ell \tag{38}
\end{align*}
$$

and, again, several of the symbols can be either $\overline{\bar{\circ}}$ or .
Let us consider the case $\theta=0$ in (13). In this case, only the even modes give contribution to V_{p}, since

$$
\begin{equation*}
V_{p}=\sum_{m=0}^{\infty} \varepsilon_{m} \bar{v}_{m} \tag{39}
\end{equation*}
$$

From (16) and with eqs. (36-38)

$$
\begin{gather*}
V_{p}=\sum_{m=0}^{\infty} \varepsilon_{m}\left(a_{m}^{+} e^{-i \bar{p} z_{p}}+\bar{b}_{m}^{+} e^{i \bar{p} z_{p}}\right) \tag{40}\\
V_{p}=-i \frac{Z_{0}}{Z_{T}} V_{p} \sum_{m=0}^{\infty} \varepsilon_{m} \bar{Q}_{m} \frac{k_{0}}{\bar{p}} \frac{\cos \bar{p}\left(\frac{\ell}{2}+z_{p}\right) \cos \bar{p}\left(\frac{\ell}{2}-z_{p}\right)}{\sin \bar{p} \ell}+
\end{gather*}
$$

$$
\begin{equation*}
-i b Z_{0} \sum_{m=0}^{\infty} \varepsilon_{m} \bar{P}_{m} \frac{k_{0}}{\bar{p}} \frac{\left[\cos (\overline{\mathrm{P}}-k) \frac{\varepsilon}{2}+\cos (\bar{p}+k) \frac{\varepsilon}{2}\right]}{\sin \overline{\mathrm{P} \ell}} \tag{41}
\end{equation*}
$$

which can be solved for V_{p} to give, for the special case where also $z_{p}=0$, that is the termination is at the center of the plate,

$$
\begin{equation*}
\left.V_{p}=\frac{-i b Z_{0} \sum_{m=0}^{\infty} \varepsilon_{\mathrm{m}} \overline{\mathrm{P}}_{\mathrm{m}} \frac{k_{0}}{\overline{\mathrm{p}}} \frac{\cos k \ell / 2}{\sin \overline{\mathrm{p}} \ell / 2}}{1+\frac{i}{2 Z_{0}} \sum_{\mathrm{T}} \sum_{\mathrm{m}=0}^{\infty} \varepsilon_{\mathrm{m}} \overline{\mathrm{Q}}_{\mathrm{m}}} \frac{\mathrm{k}_{0} \cos \overline{\mathrm{p}} \ell / 2}{\overline{\mathrm{p}} \sin \overline{\mathrm{p}} \ell / 2}\right) \tag{42}
\end{equation*}
$$

This can also be written as

$$
\begin{equation*}
V_{p}=\tilde{I}(\omega) \tilde{Z}(\omega) \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\mathbf{I}}(\omega)=\operatorname{Nef}(\mathrm{k}) \tag{44}
\end{equation*}
$$

is the beam induced current at the angular frequency ω, and

$$
\begin{equation*}
\tilde{Z}(w)=\frac{Z_{r} Z_{p}}{Z_{T}+Z_{p}} \frac{G\left(r_{0}, \theta_{0}\right)}{D(\omega)} \tag{45}
\end{equation*}
$$

is the effective plate impedance. The form factors

$$
\begin{align*}
G\left(r_{0}, \theta_{0}\right) & =2 \frac{\varphi_{0}}{\pi} \sum_{m=0}^{\infty} \frac{k_{0}}{p} \frac{\cos k \ell / 2}{\sin p \ell / 2} F_{m} \tag{46}\\
F_{m} & =\frac{1}{2} \sum_{s} \varepsilon_{m} \bar{h}_{s m} \frac{I_{s}\left(q r_{0}\right)}{1_{s}(q b)} \tag{47}\\
D(\omega) & =\sum_{m=0}^{\infty} \frac{k_{0}}{\bar{p}} \frac{\cos \bar{p} \ell / 2}{\sin \bar{p} \ell / 2} \tag{48}
\end{align*}
$$

show the dependence on the beam position relative to the plate and on the geometry of the plate.

The effective impendance expressed in the form of eq. (45) shows that it can be expressed as the parallel of two impedances, one being the termination itself Z_{Γ} and the other given by

$$
\begin{equation*}
Z_{p}=i \frac{Z_{0}}{\varphi_{0}} D(\omega) \tag{49}
\end{equation*}
$$

With a similar method it is straightforth, though quite cumbersome, to calculate the potential V_{p} also for the case $\theta_{\mathrm{p}} \neq 0$. In this case, also the odd modes will give contribution, but eqs. (43-45) and eq. (48) remain valid.

3. Discussion and Numerical Results

A beam position monitor is made of two parallel plates. Typically the difference of the termination voltages is taken, which is then divided by the sum in order to obtain the beam position.

Inspection of (33) and (34) combined to the form factors (7072) shows that there is clearly a cutoff in the plate response function given by $\lambda=b \varphi_{0}$. For the case of long wavelengths, only the mode $\mathrm{m}=0$ gives a significant contribution.

For the special case $\theta_{0}=0$ for one plate, that is $\theta_{0}=\pi$ for the other

$$
\begin{align*}
& V_{\Sigma}=4 \frac{N e}{C}\left[1+\frac{1}{\varphi_{0}} \operatorname{arctg} \frac{\left(\frac{r_{0}}{b}\right)^{2} \sin \varphi_{0}}{1-\left(\frac{r_{0}}{b}\right)^{2} \cos \varphi_{0}}\right] \frac{\pi}{z} \tag{50}\\
& V_{\Delta}=4 \frac{N e}{C} \frac{1}{\varphi_{0}} \operatorname{arctg} \frac{2 \frac{r_{0}}{b} \sin \frac{\varphi_{0}}{2}}{1-\left(\frac{r_{0}}{b}\right)^{2}} \frac{\pi}{2} \tag{51}
\end{align*}
$$

which are valid for any value of r_{0} / b between zero and 1. Figures 2 and 3 show the behavior of V_{Δ} and ratio V_{Δ} / V_{\sum} according to eqs. (50 and 51) versus r_{0} / b for different widths φ_{0} of the plates.

References

[1] L.J. Laslett, "Concerning the Self Field of a Beam Oscillating Transversally in the Presence of Clearing Electrode Plates", Proc, of the Int. Symp. on Elect. Posit. Storage Rings, Orsay, 1966.
[2] A.G. Ruggiero, and V.G. Vaccaro, "The Electromagnetic Field of an Intense Coasting..." LNF 69/79 (69).
[3] G. Di Massa, and A.G. Ruggiero, "Beam Positron Monitor Analysis", BNL-52169 (88).

Fig. 1 Geometry of the problem.

Fig. 2 The difference signal V_{Δ} divided by $V_{0}=4 N e / C$ versus beam displacement r_{0} / b, for $\theta_{0}=0$, and for different plate width φ_{0}.

Fig. 3 The ratio V_{Δ} / V_{Σ} versus beam displacement r_{0} / b, for $\theta_{0}=0$, and for different plate width φ_{0}.

